RESUMEN
BACKGROUND: Helminth and protozoan infections affect more than 1 billion children globally. Improving water quality, sanitation, handwashing, and nutrition could be more sustainable control strategies for parasite infections than mass drug administration, while providing other quality of life benefits. METHODS AND FINDINGS: We enrolled geographic clusters of pregnant women in rural western Kenya into a cluster-randomized controlled trial (ClinicalTrials.gov NCT01704105) that tested 6 interventions: water treatment, improved sanitation, handwashing with soap, combined water treatment, sanitation, and handwashing (WSH), improved nutrition, and combined WSH and nutrition (WSHN). We assessed intervention effects on parasite infections by measuring Ascaris lumbricoides, Trichuris trichiura, hookworm, and Giardia duodenalis among children born to the enrolled pregnant women (index children) and their older siblings. After 2 years of intervention exposure, we collected stool specimens from 9,077 total children aged 2 to 15 years in 622 clusters, including 2,346 children in an active control group (received household visits but no interventions), 1,117 in the water treatment arm, 1,160 in the sanitation arm, 1,141 in the handwashing arm, 1,064 in the WSH arm, 1,072 in the nutrition arm, and 1,177 in the WSHN arm. In the control group, 23% of children were infected with A. lumbricoides, 1% with T. trichiura, 2% with hookworm, and 39% with G. duodenalis. The analysis included 4,928 index children (median age in years: 2) and 4,149 older siblings (median age in years: 5); study households had an average of 5 people, <10% had electricity access, and >90% had dirt floors. Compared to the control group, Ascaris infection prevalence was lower in the water treatment arm (prevalence ratio [PR]: 0.82 [95% CI 0.67, 1.00], p = 0.056), the WSH arm (PR: 0.78 [95% CI 0.63, 0.96], p = 0.021), and the WSHN arm (PR: 0.78 [95% CI 0.64, 0.96], p = 0.017). We did not observe differences in Ascaris infection prevalence between the control group and the arms with the individual interventions sanitation (PR: 0.89 [95% CI 0.73, 1.08], p = 0.228), handwashing (PR: 0.89 [95% CI 0.73, 1.09], p = 0.277), or nutrition (PR: 86 [95% CI 0.71, 1.05], p = 0.148). Integrating nutrition with WSH did not provide additional benefit. Trichuris and hookworm were rarely detected, resulting in imprecise effect estimates. No intervention reduced Giardia. Reanalysis of stool samples by quantitative polymerase chain reaction confirmed the reductions in Ascaris infections measured by microscopy in the WSH and WSHN groups. Trial limitations included imperfect uptake of targeted intervention behaviors, limited power to detect effects on rare parasite infections, and that it was not feasible to blind participants and sample collectors to treatment status. However, lab technicians and data analysts were blinded to treatment status. The trial was funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development. CONCLUSIONS: Integration of improved water quality, sanitation, and handwashing could contribute to sustainable control strategies for Ascaris infections, particularly in similar settings with recent or ongoing deworming programs. Combining nutrition with WSH did not provide further benefits, and water treatment alone was similarly effective to integrated WSH. Our findings provide new evidence that drinking water should be given increased attention as a transmission pathway for Ascaris. TRIAL REGISTRATION: ClinicalTrials.gov NCT01704105.
Asunto(s)
Giardiasis/prevención & control , Desinfección de las Manos/tendencias , Evaluación Nutricional , Población Rural/tendencias , Saneamiento/tendencias , Purificación del Agua , Adolescente , Animales , Niño , Preescolar , Femenino , Giardia , Giardiasis/epidemiología , Giardiasis/transmisión , Desinfección de las Manos/métodos , Helmintos , Humanos , Masculino , Saneamiento/métodos , Suelo/parasitología , Resultado del Tratamiento , Purificación del Agua/métodosRESUMEN
During 2012-2015, US-bound refugees living in Myanmar-Thailand border camps (n = 1,839) were surveyed for hookworm infection and treatment response by using quantitative PCR. Samples were collected at 3 time points: after each of 2 treatments with albendazole and after resettlement in the United States. Baseline prevalence of Necator americanus hookworm was 25.4%, Ancylostoma duodenale 0%, and Ancylostoma ceylanicum (a zoonosis) 5.4%. Compared with N. americanus prevalence, A. ceylanicum hookworm prevalence peaked in younger age groups, and blood eosinophil concentrations during A. ceylanicum infection were higher than those for N. americanus infection. Female sex was associated with a lower risk for either hookworm infection. Cure rates after 1 dose of albendazole were greater for A. ceylanicum (93.3%) than N. americanus (65.9%) hookworm (p<0.001). Lower N. americanus hookworm cure rates were unrelated to ß-tubulin single-nucleotide polymorphisms at codons 200 or 167. A. ceylanicum hookworm infection might be more common in humans than previously recognized.
Asunto(s)
Ancylostoma/aislamiento & purificación , Anquilostomiasis/epidemiología , Anquilostomiasis/parasitología , Refugiados , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Albendazol/uso terapéutico , Anquilostomiasis/tratamiento farmacológico , Animales , Antihelmínticos/uso terapéutico , Niño , Preescolar , Heces/parasitología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mianmar/epidemiología , Tailandia/epidemiología , Adulto JovenRESUMEN
BACKGROUND: Soil-transmitted helminths infect an estimated 18% of the world's population, causing a significant health burden. Microscopy has been the primary tool for diagnosing eggs from fecal samples, but its sensitivity drops in low-prevalence settings. Quantitative real-time polymerase chain reaction (qPCR) is slowly increasing in research and clinical settings. However, there is still no consensus on preferred qPCR targets. METHODS: We aimed to compare soil-transmitted helminth (STH) DNA detection methods by testing naïve stool samples spiked with known quantities of STH eggs and larvae. DNA extracts from spiked samples were tested using independent quantitative realtime PCR (qPCR) assays targeting ribosomal or putative non-protein coding satellite sequences. RESULTS: For Trichuris trichiura, there was a strong correlation between egg/larvae counts and qPCR results using either qPCR method (0.86 and 0.87, respectively). Strong correlations also existed for A. lumbricoides (0.60 and 0.63, respectively), but weaker correlations were found for Ancylostoma duodenale (0.41 for both assays) and Strongyloides stercoralis (0.48 and 0.65, respectively). No correlation for Necator americanus was observed when testing with either qPCR assay. Both assays had fair-to-moderate agreement across targets when using field-collected stool samples (0.28-0.45, for all STHs), except for S. stercoralis (0.12) with slight agreement. CONCLUSIONS: There is a strong correlation between qPCR results and egg/larvae counts. Our study confirms that qPCR is an effective diagnostic tool, even with low-intensity infections, regardless of the DNA-based diagnostic marker used. However, the moderate agreement between the two different qPCR assays when testing field samples highlights the need to understand the role of these targets in the genome so that the parasite burden can be quantified more accurately and consistently by qPCR.
Asunto(s)
ADN de Helmintos , Heces , Helmintiasis , Helmintos , Reacción en Cadena en Tiempo Real de la Polimerasa , Suelo , Heces/parasitología , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Humanos , ADN de Helmintos/genética , Suelo/parasitología , Helmintiasis/diagnóstico , Helmintiasis/parasitología , Helmintos/genética , Helmintos/aislamiento & purificación , Helmintos/clasificación , Recuento de Huevos de Parásitos/métodos , Sensibilidad y Especificidad , Trichuris/aislamiento & purificación , Trichuris/genéticaRESUMEN
BACKGROUND: Lymphatic filariasis (LF) is a globally significant, vector-borne, neglected tropical disease that can result in severe morbidity and disability. As the World Health Organization (WHO) Global Programme to Eliminate Lymphatic Filariasis makes progress towards LF elimination, there is greater need to develop sensitive strategies for post-intervention surveillance. Molecular xenomonitoring (MX), the detection of pathogen DNA in vectors, may provide a sensitive complement to traditional human-based surveillance techniques, including detection of circulating filarial antigen and microfilaraemia (Mf). This study aims to explore the relationship between human Mf prevalence and the prevalence of polymerase chain reaction (PCR)-positive mosquitoes using MX. METHODS: This study compared Mf and MX results from a 2019 community-based survey conducted in 35 primary sampling units (PSUs) in Samoa. This study also investigated concordance between presence and absence of PCR-positive mosquitoes and Mf-positive participants at the PSU level, and calculated sensitivity and negative predictive values for each indicator using presence of any Mf-positive infection in humans or PCR-positive mosquitoes as a reference. Correlation between prevalence of filarial DNA in mosquitoes and Mf in humans was estimated at the PSU and household/trap level using mixed-effect Bayesian multilevel regression analysis. RESULTS: Mf-positive individuals were identified in less than half of PSUs in which PCR-positive mosquito pools were present (13 of 28 PSUs). Prevalence of PCR-positive mosquitoes (each species separately) was positively correlated with Mf prevalence in humans at the PSU level. Analysed at the species level, only Aedes polynesiensis demonstrated strong evidence of positive correlation (r) with human Mf prevalence at both PSU (r: 0.5, 95% CrI 0.1-0.8) and trap/household levels (r: 0.6, 95% CrI 0.2-0.9). CONCLUSIONS: Findings from this study demonstrate that MX can be a sensitive surveillance method for identifying residual infection in low Mf prevalence settings. MX identified more locations with signals of transmission than Mf-testing. Strong correlation between estimated PCR-positive mosquitoes in the primary vector species and Mf in humans at small spatial scales demonstrates the utility of MX as an indicator for LF prevalence in Samoa and similar settings. Further investigation is needed to develop MX guidelines to strengthen the ability of MX to inform operational decisions.
Asunto(s)
Filariasis Linfática , Mosquitos Vectores , Wuchereria bancrofti , Filariasis Linfática/epidemiología , Filariasis Linfática/parasitología , Filariasis Linfática/diagnóstico , Humanos , Animales , Prevalencia , Mosquitos Vectores/parasitología , Masculino , Wuchereria bancrofti/genética , Wuchereria bancrofti/aislamiento & purificación , Samoa/epidemiología , Femenino , Adulto , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Adolescente , Adulto Joven , Niño , Microfilarias/aislamiento & purificación , AncianoRESUMEN
BACKGROUND: Infections with soil-transmitted helminths (STH) and schistosomiasis (SCH) result in a significant global health burden, particularly in rural communities in low and middle-income countries. While microscopy remains the primary diagnostic method for STH and SCH in resource-limited settings, nucleic acid amplification tests (NAATs) are gaining prominence as tools for evaluation of public health control programs in endemic countries, and individual diagnosis in high-income countries. Despite the high sensitivity and specificity of NAATs, previous research has highlighted inter-laboratory variations, both in technical and clinical performance, justifying the need for continuous proficiency testing. METHODOLOGY: Results from 5 rounds over a 5-year period of the so far only longitudinal international Helminth External Molecular Quality Assessment Scheme (HEMQAS), coordinated by the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML), were examined in order to (i) assess the diagnostic proficiency of laboratories in detecting helminths in stool and (ii) identify potential factors contributing to variations in performance. OUTCOME AND CONCLUSIONS: Thirty-six laboratories, from 18 countries and 5 continents, participated in HEMQAS. The overall diagnostic performances were satisfying, with remarkably low numbers (<2%) of false-positive results. False-negative results were more often reported for stool (15%) than for DNA (5%) samples. False-negative results varied largely between targets (the highest number (29%) for Trichuris trichiura). Twenty-five laboratories provided a sufficient number of results for a robust comparison between participating laboratories, which confirmed substantial inter-laboratory variability in quantitative NAAT results (Cq-values). This variability likely arises from differences in pre-treatment, DNA isolation and DNA-target amplification procedures. This study emphasizes the complexity of molecular diagnosis for STH and SCH, highlighting the critical role of proper stool preparation and DNA isolation methods. The results underscore the necessity for laboratory professionals and public health decision-makers to recognize these complexities and continuously undertake external quality assessment schemes to ensure accurate and reliable performance in molecular diagnosis.
Asunto(s)
Heces , Helmintiasis , Helmintos , Técnicas de Amplificación de Ácido Nucleico , Schistosoma , Esquistosomiasis , Suelo , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/normas , Humanos , Animales , Helmintiasis/diagnóstico , Helmintiasis/parasitología , Heces/parasitología , Suelo/parasitología , Esquistosomiasis/diagnóstico , Schistosoma/genética , Schistosoma/aislamiento & purificación , Helmintos/aislamiento & purificación , Helmintos/genética , Helmintos/clasificación , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normasRESUMEN
BACKGROUND: One-fifth of the global population is infected with soil-transmitted helminths (STH). Mass drug administration (MDA) with deworming medication is widely implemented to control morbidity associated with STH infections. However, surveillance of human infection prevalence by collecting individual stool samples is time-consuming, costly, often stigmatized, and logistically challenging. Current methods of STH detection are poorly sensitive, particularly in low-intensity and low-prevalence populations. METHODOLOGY/PRINCIPAL FINDINGS: We aimed to develop a sensitive and specific molecular method for detecting STH DNA in large volumes of soil (20 g) by conducting laboratory and proof of concept studies across field sites in Kenya, Benin, and India. We collected human stool (n = 669) and soil (n = 478) from 322 households across the three study sites. We developed protocols for DNA extraction from 20 g of soil and qPCR to detect Ascaris lumbricoides, Trichuris trichiura, Necator americanus, and Ancylostoma duodenale. Agreement between detection of STH via qPCR, digital droplet PCR (ddPCR), and microscopy-based methods was assessed using the Cohen's Kappa statistic. Finally, we estimated associations between soil characteristics and detection of STH in soil by qPCR, as well as between STH detected in soil and STH detected in stool from matched households, adjusting for soil characteristics. The overall prevalence of STH in soil by qPCR was 31% for A. lumbricoides, 3% for T. trichiura, and 13% for any hookworm species. ddPCR and qPCR performed similarly. However, there was poor agreement between STH detected in soil by qPCR versus light microscopy. Microscopy underestimated the prevalence of A. lumbricoides and N. americanus and overestimated T. trichiura. Detection of an STH species in household soil was strongly associated with increased odds of a household member being infected with that same species. CONCLUSIONS/SIGNIFICANCE: Soil surveillance for STH has several benefits over stool-based surveillance, including lower cost and higher success rates for sample collection. Considering that delivery of MDA occurs at the community level, environmental surveillance using molecular methods could be a cost-effective alternate strategy for monitoring STH in these populations.
Asunto(s)
Ascaris lumbricoides , Heces , Helmintiasis , Suelo , Humanos , Suelo/parasitología , Animales , Heces/parasitología , Kenia/epidemiología , Helmintiasis/epidemiología , Helmintiasis/diagnóstico , Ascaris lumbricoides/aislamiento & purificación , Ascaris lumbricoides/genética , ADN de Helmintos/genética , ADN de Helmintos/análisis , India/epidemiología , Helmintos/aislamiento & purificación , Helmintos/genética , Helmintos/clasificación , Masculino , Femenino , Niño , Necator americanus/aislamiento & purificación , Necator americanus/genética , Prevalencia , Adolescente , Preescolar , Ascariasis/epidemiología , Ascariasis/diagnóstico , Ascariasis/parasitología , Ancylostoma/aislamiento & purificación , Ancylostoma/genética , Tricuriasis/epidemiología , Tricuriasis/diagnóstico , Tricuriasis/parasitología , Adulto , Monitoreo Epidemiológico , Sensibilidad y Especificidad , Trichuris/aislamiento & purificación , Trichuris/genéticaRESUMEN
BACKGROUND: Onchocerca volvulus is a filarial parasite that is a major cause of dermatitis and blindness in endemic regions primarily in sub-Saharan Africa. Widespread efforts to control the disease caused by O. volvulus infection (onchocerciasis) began in 1974 and in recent years, following successful elimination of transmission in much of the Americas, the focus of efforts in Africa has moved from control to the more challenging goal of elimination of transmission in all endemic countries. Mass drug administration (MDA) with ivermectin has reached more than 150 million people and elimination of transmission has been confirmed in four South American countries, with at least two African countries having now stopped MDA as they approach verification of elimination. It is essential that accurate data for active transmission are used to assist in making the critical decision to stop MDA, since missing low levels of transmission and infection can lead to continued spread or recrudescence of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Current World Health Organization guidelines for MDA stopping decisions and post-treatment surveillance include screening pools of the Simulium blackfly vector for the presence of O. volvulus larvae using a PCR-ELISA-based molecular technique. In this study, we address the potential of an updated, practical, standardized molecular diagnostic tool with increased sensitivity and species-specificity by comparing several candidate qPCR assays. When paired with heat-stable reagents, a qPCR assay with a mitochondrial DNA target (OvND5) was found to be more sensitive and species-specific than an O150 qPCR, which targets a non-protein coding repetitive DNA sequence. The OvND5 assay detected 19/20 pools of 100 blackfly heads spiked with a single L3, compared to 16/20 for the O150 qPCR assay. CONCLUSIONS/SIGNIFICANCE: Given the improved sensitivity, species-specificity and resistance to PCR inhibitors, we identified OvND5 as the optimal target for field sample detection. All reagents for this assay can be shipped at room temperature with no loss of activity. The qPCR protocol we propose is also simpler, faster, and more cost-effective than the current end-point molecular assays.
Asunto(s)
Vólvulo Intestinal , Onchocerca volvulus , Oncocercosis , Simuliidae , Animales , Humanos , ADN Mitocondrial , Ivermectina/uso terapéutico , Onchocerca/genética , Onchocerca volvulus/genética , Oncocercosis/tratamiento farmacológico , Simuliidae/parasitologíaRESUMEN
BACKGROUND: Community presence of loiasis must be determined before mass drug administration programmes for lymphatic filariasis and onchocerciasis can be implemented. However, taking human blood samples for loiasis surveillance is invasive and operationally challenging. A xenosurveillance approach based on the molecular screening of mosquitoes and their excreta/feces (E/F) for Loa loa DNA may provide a non-invasive method for detecting the community presence of loiasis. METHODS: We collected 770 wild mosquitoes during a pilot study in a known loiasis transmission area in Mbalmayo, Cameroon. Of these, 376 were preserved immediately while 394 were kept in pools to collect 36-hour E/F samples before processing. Carcasses and E/F were screened for L. loa DNA. To demonstrate this method's potential for integrated disease surveillance, the samples were further tested for Wuchereria bancrofti, Mansonella perstans, and Plasmodium falciparum. RESULTS: Despite limited sample numbers, L. loa DNA was detected in eight immediately-stored mosquitoes (2.13%; 95% CI 1.08 to 4.14), one carcass stored after providing E/F (0.25%; 95% CI 0.04 to 1.42), and three E/F samples (estimated prevalence 0.77%; 95% CI 0.15 to 2.23%). M. perstans and P. falciparum DNA were also detected in carcasses and E/F samples, while W. bancrofti DNA was detected in E/F. None of the carcasses positive for filarial worm DNA came from pools that provided a positive E/F sample, supporting the theory that, in incompetent vectors, ingested parasites undergo a rapid, complete expulsion in E/F. CONCLUSIONS: Mosquito xenosurveillance may provide a useful tool for the surveillance of loiasis alongside other parasitic diseases.
Asunto(s)
Culicidae , Loiasis , Malaria Falciparum , Animales , Humanos , Loa/genética , Mansonella , Wuchereria bancrofti/genética , Loiasis/parasitología , Plasmodium falciparum/genética , Proyectos Piloto , Camerún/epidemiología , Mosquitos Vectores , Malaria Falciparum/epidemiología , HecesRESUMEN
BACKGROUND: Mansonella perstans is among the most neglected of the neglected tropical diseases and is believed to cause more human infections than any other filarial pathogen in Africa. Based largely upon assumptions of limited infection-associated morbidity, this pathogen remains understudied, and many basic questions pertaining to its pathogenicity, distribution, prevalence, and vector-host relationships remain unanswered. However, in recent years, mounting evidence of the potential for increased Mansonella infection-associated disease has sparked a renewal in research interest. This, in turn, has produced a need for improved diagnostics, capable of providing more accurate pictures of infection prevalence, pathogen distribution, and vector-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: Utilizing a previously described pipeline for the discovery of optimal molecular diagnostic targets, we identified a repetitive DNA sequence, and developed a corresponding assay, which allows for the sensitive and species-specific identification of M. perstans in human blood samples. Testing also demonstrated the ability to utilize this assay for the detection of M. perstans in field-collected mosquito samples. When testing both sample types, our repeat-targeting index assay outperformed a ribosomal sequence-targeting reference assay, facilitating the identification of additional M. perstans-positive samples falsely characterized as "negative" using the less sensitive detection method. CONCLUSIONS/SIGNIFICANCE: Through the development of an assay based upon the systematic identification of an optimal DNA target sequence, our novel diagnostic assay will provide programmatic efforts with a sensitive and specific testing platform that is capable of accurately mapping M. perstans infection and determining prevalence. Furthermore, with the added ability to identify the presence of M. perstans in mosquito samples, this assay will help to define our knowledge of the relationships that exist between this pathogen and the various geographically relevant mosquito species, which have been surmised to represent potential secondary vectors under certain conditions. Detection of M. perstans in mosquitoes will also demonstrate proof-of-concept for the mosquito-based monitoring of filarial pathogens not vectored primarily by mosquitoes, an approach expanding opportunities for integrated surveillance.
Asunto(s)
Culicidae , Mansoneliasis , Parásitos , Animales , Humanos , Mansonella/genética , Mosquitos Vectores , Genómica , Mansoneliasis/diagnóstico , Mansoneliasis/epidemiologíaRESUMEN
Molecular xenomonitoring (MX), the detection of filarial DNA in mosquitoes using molecular methods (PCR), is a potentially useful surveillance strategy for lymphatic filariasis (LF) elimination programs. Delay in filarial antigen (Ag) clearance post-treatment is a limitation of using human surveys to provide an early indicator of the impact of mass drug administration (MDA), and MX may be more useful in this setting. We compared prevalence of infected mosquitoes pre- and post-MDA (2018 and 2019) in 35 primary sampling units (PSUs) in Samoa, and investigated associations between the presence of PCR-positive mosquitoes and Ag-positive humans. We observed a statistically significant decline in estimated mosquito infection prevalence post-MDA at the national level (from 0.9% to 0.3%, OR 0.4) but no change in human Ag prevalence during this time. Ag prevalence in 2019 was higher in randomly selected PSUs where PCR-positive pools were detected (1.4% in ages 5-9; 4.8% in ages ≥10), compared to those where PCR-positive pools were not detected (0.2% in ages 5-9; 3.2% in ages ≥10). Our study provides promising evidence for MX as a complement to human surveys in post-MDA surveillance.
RESUMEN
BACKGROUND: Elimination and control of Schistosoma japonicum, the most virulent of the schistosomiasis-causing blood flukes, requires the development of sensitive and specific diagnostic tools capable of providing an accurate measurement of the infection prevalence in endemic areas. Typically, detection of S. japonicum has occurred using the Kato-Katz technique, but this methodology, which requires skilled microscopists, has been shown to radically underestimate levels of infection. With the ever-improving capabilities of next-generation sequencing and bioinformatic analysis tools, identification of satellite sequences and other highly repetitive genomic elements for use as real-time PCR diagnostic targets is becoming increasingly common. Assays developed using these targets have the ability to improve the sensitivity and specificity of results for epidemiological studies that can in turn be used to inform mass drug administration and programmatic decision making. METHODOLOGY/PRINCIPAL FINDINGS: Utilizing Tandem Repeat Analyzer (TAREAN) and RepeatExplorer2, a cluster-based analysis of the S. japonicum genome was performed and a tandemly arranged genomic repeat, which we named SjTR1 (Schistosoma japonicum Tandem Repeat 1), was selected as the target for a real-time PCR diagnostic assay. Based on these analyses, a primer/probe set was designed and the assay was optimized. The resulting real-time PCR test was shown to reliably detect as little as 200 ag of S. japonicum genomic DNA and as little as 1 egg per gram of human stool. Based on these results, the index assay reported in this manuscript is more sensitive than previously published real-time PCR assays for the detection of S. japonicum. CONCLUSIONS/SIGNIFICANCE: The extremely sensitive and specific diagnostic assay described in this manuscript will facilitate the accurate detection of S. japonicum, particularly in regions with low levels of endemicity. This assay will be useful in providing data to inform programmatic decision makers, aiding disease control and elimination efforts.
Asunto(s)
Heces/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Schistosoma japonicum/aislamiento & purificación , Esquistosomiasis Japónica/parasitología , Animales , Cartilla de ADN/genética , Femenino , Humanos , Masculino , Schistosoma japonicum/genética , Esquistosomiasis Japónica/diagnóstico , Sensibilidad y EspecificidadRESUMEN
As lymphatic filariasis (LF) programs move closer to established targets for validation elimination of LF as a public health problem, diagnostic tools capable of supporting the needs of the programs are critical for success. Known limitations of existing diagnostic tools make it challenging to have confidence that program endpoints have been achieved. In 2019, the World Health Organization (WHO) established a Diagnostic Technical Advisory Group (DTAG) for Neglected Tropical Diseases tasked with prioritizing diagnostic needs including defining use-cases and target product profiles (TPPs) for needed tools. Subsequently, disease-specific DTAG subgroups, including one focused on LF, were established to develop TPPs and use-case analyses to be used by product developers. Here, we describe the development of two priority TPPs for LF diagnostics needed for making decisions for stopping mass drug administration (MDA) of a triple drug regimen and surveillance. Utilizing the WHO core TPP development process as the framework, the LF subgroup convened to discuss and determine attributes required for each use case. TPPs considered the following parameters: product use, design, performance, product configuration and cost, and access and equity. Version 1.0 TPPs for two use cases were published by WHO on 12 March 2021 within the WHO Global Observatory on Health Research and Development. A common TPP characteristic that emerged in both use cases was the need to identify new biomarkers that would allow for greater precision in program delivery. As LF diagnostic tests are rarely used for individual clinical diagnosis, it became apparent that reliance on population-based surveys for decision making requires consideration of test performance in the context of such surveys. In low prevalence settings, the number of false positive test results may lead to unnecessary continuation or resumption of MDA, thus wasting valuable resources and time. Therefore, highly specific diagnostic tools are paramount when used to measure low thresholds. The TPP process brought to the forefront the importance of linking use case, program platform and diagnostic performance characteristics when defining required criteria for diagnostic tools.
Asunto(s)
Pruebas Diagnósticas de Rutina/normas , Filariasis Linfática/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/prevención & control , Humanos , Salud Pública , Organización Mundial de la SaludRESUMEN
BACKGROUND: It is increasingly recognized that host genetic factors may play an important role in determining the outcome of filarial infections. To test this hypothesis in bancroftian lymphatic filariasis, pedigree data were collected twice during an 18-year period from an isolated Polynesian population living on a Pacific island where lymphatic filariasis is endemic. METHODS: Using variance-component analysis, we examined the contribution of shared genetic and environmental effects on host clinical and immune responses to filarial infection, along with potential confounding determinants. RESULTS: Sex was found to have a negligible influence on heritability estimates, but shared-household effects accounted for up to 32% of host variability. After accounting for these shared-household effects, heritability estimates suggested that levels of microfilariae and circulating adult worm antigen, as well as host eosinophil and immunoglobulin G antibody responses to larval and adult worm antigens, were highly heritable (range of heritability estimates, 0.15-0.84). CONCLUSIONS: These data provide evidence of a key role for genetic factors in determining the host response to filarial infections in humans and emphasize the complexity of the relationships among the host, parasite, and environment.
Asunto(s)
Filariasis Linfática/genética , Predisposición Genética a la Enfermedad , Wuchereria bancrofti/fisiología , Adolescente , Adulto , Distribución por Edad , Animales , Niño , Enfermedades Endémicas , Femenino , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Polinesia/epidemiología , Adulto JovenRESUMEN
BACKGROUND: Optimization of polymerase chain reaction (PCR)-based diagnostics requires the careful selection of molecular targets that are both highly repetitive and pathogen-specific. Advances in both next-generation sequencing (NGS) technologies and bioinformatics-based analysis tools are facilitating this selection process, informing target choices and reducing labor. Once developed, such assays provide disease control and elimination programs with an additional set of tools capable of evaluating and monitoring intervention successes. The importance of such tools is heightened as intervention efforts approach their endpoints, as accurate and complete information is an essential component of the informed decision-making process. As global efforts for the control and elimination of both lymphatic filariasis and malaria continue to make significant gains, the benefits of diagnostics with improved analytical and clinical/field-based sensitivities and specificities will become increasingly apparent. METHODOLOGY/PRINCIPAL FINDINGS: Coupling Illumina-based NGS with informatics approaches, we have successfully identified the tandemly repeated elements in both the Wuchereria bancrofti and Plasmodium falciparum genomes of putatively greatest copy number. Utilizing these sequences as quantitative real-time PCR (qPCR)-based targets, we have developed assays capable of exploiting the most abundant tandem repeats for both organisms. For the detection of P. falciparum, analysis and development resulted in an assay with improved analytical and field-based sensitivity vs. an established ribosomal sequence-targeting assay. Surprisingly, analysis of the W. bancrofti genome predicted a ribosomal sequence to be the genome's most abundant tandem repeat. While resulting cycle quantification values comparing a qPCR assay targeting this ribosomal sequence and a commonly targeted repetitive DNA sequence from the literature supported our finding that this ribosomal sequence was the most prevalent tandemly repeated target in the W. bancrofti genome, the resulting assay did not significantly improve detection sensitivity in conjunction with field sample testing. CONCLUSIONS/SIGNIFICANCE: Examination of pathogen genomes facilitates the development of PCR-based diagnostics targeting the most abundant and specific genomic elements. While in some instances currently available tools may deliver equal or superior performance, systematic analysis of potential targets provides confidence that the selected assays represent the most advantageous options available and that informed assay selection is occurring in the context of a particular study's objectives.
Asunto(s)
Culicidae/parasitología , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuencias Repetidas en Tándem , Wuchereria bancrofti/aislamiento & purificación , Animales , ADN de Helmintos , Plasmodium falciparum/genética , Wuchereria bancrofti/genéticaRESUMEN
Eukaryotic parasites are significant contributors to childhood illness in Niger. While helminthiases have received national attention through mass deworming efforts, the epidemiology of intestinal protozoa in Niger remains underexamined. This study employed real-time PCR diagnostics to describe the prevalence of two schistosomes, four soil-transmitted helminths, and one protozoan parasite in Boboye Department, Dosso Region. Prevalence was assessed using bulk stool specimens collected from a population-based sample of 86 children residing in 9 communities. Anthropometric measurements were used to calculate child growth z-scores and stool consistency was graded. Helminths were absent from the study population, with the exception of a single Schistosoma haematobium infection (1/86; 1.2%). Giardia duodenalis was the only protozoa present, detected in 65% (56/86) of children. Prevalence of G. duodenalis peaked in 2-year-olds with 88% (15/17) positivity. The population was generally undernourished, though growth indices did not differ significantly between children with and without G. duodenalis infection.
RESUMEN
We recently developed a superhydrophobic cone-based method for the collection of mosquito excreta/feces (E/F) for the molecular xenomonitoring of vector-borne parasites showing higher throughput compared to the traditional approach. To test its field applicability, we used this platform to detect the presence of filarial and malaria parasites in two villages of Ghana and compared results to those for detection in mosquito carcasses and human blood. We compared the molecular detection of three parasites (Wuchereria bancrofti, Plasmodium falciparum and Mansonella perstans) in mosquito E/F, mosquito carcasses and human blood collected from the same households in two villages in the Savannah Region of the country. We successfully detected the parasite DNA in mosquito E/F from indoor resting mosquitoes, including W. bancrofti which had a very low community prevalence (2.5-3.8%). Detection in the E/F samples was concordant with detection in insect whole carcasses and human blood, and a parasite not vectored by mosquitoes was detected as well.Our approach to collect and test mosquito E/F successfully detected a variety of parasites at varying prevalence in the human population under field conditions, including a pathogen (M. perstans) which is not transmitted by mosquitoes. The method shows promise for further development and applicability for the early detection and surveillance of a variety of pathogens carried in human blood.
Asunto(s)
Culicidae/parasitología , ADN Protozoario/aislamiento & purificación , Heces/parasitología , Malaria/parasitología , Mosquitos Vectores/parasitología , Animales , ADN de Helmintos/genética , ADN Protozoario/genética , Composición Familiar , Ghana/epidemiología , Humanos , Malaria/epidemiología , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/genética , Prevalencia , Wuchereria bancrofti/genéticaRESUMEN
Though bulk stool remains the gold standard specimen type for enteropathogen diagnosis, rectal swabs may offer comparable sensitivity with greater ease of collection for select pathogens. This study sought to evaluate the validity and reproducibility of rectal swabs as a sample collection method for the molecular diagnosis of Giardia duodenalis. Paired rectal swab and bulk stool samples were collected from 86 children ages 0-4 years living in southwest Niger, with duplicate samples collected among a subset of 50 children. Infection was detected using a previously validated real-time PCR diagnostic targeting the small subunit ribosomal RNA gene. Giardia duodenalis was detected in 65.5% (55/84) of bulk stool samples and 44.0% (37/84) of swab samples. The kappa evaluating test agreement was 0.81 (95% CI: 0.54-1.00) among duplicate stool samples (N = 49) and 0.75 (95% CI: 0.47-1.00) among duplicate rectal swabs (N = 48). Diagnostic sensitivity was 93% (95% CI: 84-98) by bulk stool and 63% (95% CI: 49-75) by rectal swabs. When restricting to the lowest three quartiles of bulk stool quantitation cycle values (an indication of relatively high parasite load), sensitivity by rectal swabs increased to 78.0% (95% CI: 64-89, P < 0.0001). These findings suggest that rectal swabs provide less sensitive and reproducible results than bulk stool for the real-time PCR diagnosis of G. duodenalis. However, their fair sensitivity for higher parasite loads suggests that swabs may be a useful tool for detecting higher burden infections when stool collection is excessively expensive or logistically challenging.
Asunto(s)
Giardia lamblia/aislamiento & purificación , Giardiasis/diagnóstico , Manejo de Especímenes/métodos , Preescolar , Pruebas Diagnósticas de Rutina , Heces/parasitología , Femenino , Giardia lamblia/genética , Giardiasis/parasitología , Humanos , Lactante , Recién Nacido , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Recto/parasitología , Reproducibilidad de los ResultadosRESUMEN
Parafilaroides decorus, also known as sea lion lungworm, is a metastrongyloid nematode that infects otariid hosts, such as the charismatic California sea lion, Zalophus californianus. P. decorus causes bronchointerstitial pneumonia, respiratory distress, reduced ability to swim, dive and hunt and as a result, increased mortality particularly in young animals. Respiratory disease is a leading cause of stranding and admission to rehabilitation centers on the Pacific coast. Low-coverage genomic sequencing of four P. decorus individuals analyzed through Galaxy's RepeatExplorer identified a novel repeat DNA family we employed to design a sensitive quantitative PCR (qPCR) assay for diagnosing infections from fecal or sputum samples. The assay detects as little as 10 fg of P. decorus DNA and a linear regression model developed using a standard curve can be used to estimate the concentration of P. decorus DNA in a sample, ± 0.015 ng. This knowledge can be leveraged to estimate the level of parasite burden, which can be used to design improved treatments for animals in rehabilitation. Improved treatment of infections will aid in more animals being successfully released back into the wild.
RESUMEN
There is growing interest in local elimination of soil-transmitted helminth (STH) infection in endemic settings. In such settings, highly sensitive diagnostics are needed to detect STH infection. We compared double-slide Kato-Katz, the most commonly used copromicroscopic detection method, to multi-parallel quantitative polymerase chain reaction (qPCR) in 2,799 stool samples from children aged 2-12 years in a setting in rural Bangladesh with predominantly low STH infection intensity. We estimated the sensitivity and specificity of each diagnostic using Bayesian latent class analysis. Compared to double-slide Kato-Katz, STH prevalence using qPCR was almost 3-fold higher for hookworm species and nearly 2-fold higher for Trichuris trichiura. Ascaris lumbricoides prevalence was lower using qPCR, and 26% of samples classified as A. lumbricoides positive by Kato-Katz were negative by qPCR. Amplicon sequencing of the 18S rDNA from 10 samples confirmed that A. lumbricoides was absent in samples classified as positive by Kato-Katz and negative by qPCR. The sensitivity of Kato-Katz was 49% for A. lumbricoides, 32% for hookworm, and 52% for T. trichiura; the sensitivity of qPCR was 79% for A. lumbricoides, 93% for hookworm, and 90% for T. trichiura. Specificity was ≥ 97% for both tests for all STH except for Kato-Katz for A. lumbricoides (specificity = 68%). There were moderate negative, monotonic correlations between qPCR cycle quantification values and eggs per gram quantified by Kato-Katz. While it is widely assumed that double-slide Kato-Katz has few false positives, our results indicate otherwise and highlight inherent limitations of the Kato-Katz technique. qPCR had higher sensitivity than Kato-Katz in this low intensity infection setting.
Asunto(s)
Helmintiasis/diagnóstico , Parasitosis Intestinales/diagnóstico , Técnicas Microbiológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Ancylostomatoidea/aislamiento & purificación , Animales , Ascaris lumbricoides/aislamiento & purificación , Bangladesh , Niño , Preescolar , ADN de Helmintos/genética , ADN Ribosómico/genética , Heces/parasitología , Femenino , Humanos , Lactante , Masculino , ARN Ribosómico 18S/genética , Población Rural , Sensibilidad y Especificidad , Trichuris/aislamiento & purificaciónRESUMEN
Some recent studies suggest ongoing transmission of parasitic diseases in the American South; however, surveys in Mississippi children are lacking. We enrolled 166 children (median age 8 years, range 4-13 years) from the Mississippi Delta region and carried out multi-parallel real-time polymerase chain reaction (PCR) for Necator americanus, Ascaris lumbricoides, and Strongyloides stercoralis on their stool samples. Dried blood spots were obtained for multiplex serology antibody detection. Of 166 children, all reported having flushable toilets, 11% had soil exposure, and 34% had a pet dog or cat. None had prior diagnosis or treatment of parasitic disease. Multi-parallel real-time PCRs were negative on the 89 stool DNA extracts available for testing. Dried blood spot testing of all 166 children determined the seroprevalence of IgG antibodies to Toxocara spp. (3.6%), Cryptosporidium (2.4%), S. stercoralis, Fasciola hepatica, and Giardia duodenalis (all 0%). In conclusion, parasitic infections and exposure were scarce in this population. Larger studies of at-risk populations are needed.