Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Rev Mol Cell Biol ; 20(11): 698-714, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31263220

RESUMEN

The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Replicación del ADN , Inestabilidad Genómica , Animales , Humanos
2.
Mol Cell ; 81(11): 2428-2444.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33882298

RESUMEN

Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.


Asunto(s)
Proteína BRCA1/genética , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN , Células Madre Embrionarias de Ratones/metabolismo , Mutaciones Letales Sintéticas , Animales , Proteína BRCA1/metabolismo , Ciclo Celular/genética , Línea Celular , Células Clonales , ADN Helicasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Ubiquitinación
3.
Mol Cell ; 81(21): 4440-4456.e7, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34597596

RESUMEN

Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.


Asunto(s)
Proteína BRCA2/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , Exodesoxirribonucleasas/metabolismo , Factores de Transcripción/química , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Reparación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Células HeLa , Humanos , Ácido Mevalónico , Ratones , Complejos Multiproteicos , Mutación , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/metabolismo , Recombinación Genética
4.
Mol Cell ; 63(4): 542-544, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540853

RESUMEN

Using a combination of genetics and cellular DNA rejoining assays, in this issue of Molecular Cell, Wyatt et al. (2016) demonstrate a critical role for mammalian DNA polymerase θ in the rejoining of DNA ends that are poor substrates for classical non-homologous end joining.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , Animales , ADN/genética , Reparación del ADN por Unión de Extremidades , Humanos , ADN Polimerasa theta
5.
Nature ; 551(7682): 590-595, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29168504

RESUMEN

Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites. BRCA1 has no equivalent role at chromosomal double-stranded DNA breaks, indicating that tandem duplications form specifically at stalled forks. Tandem duplications in BRCA1 mutant cells arise by a replication restart-bypass mechanism terminated by end joining or by microhomology-mediated template switching, the latter forming complex tandem duplication breakpoints. Solitary DNA ends form directly at Tus-Ter, implicating misrepair of these lesions in tandem duplication formation. Furthermore, BRCA1 inactivation is strongly associated with ~10 kilobase tandem duplications in ovarian cancer. This tandem duplicator phenotype may be a general signature of BRCA1-deficient cancer.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Replicación del ADN/genética , Secuencias Repetidas en Tándem/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Animales , Proteína BRCA1 , Células Cultivadas , Roturas del ADN de Doble Cadena , Reparación del ADN , Células Madre Embrionarias , Femenino , Genes Reporteros , Recombinación Homóloga , Humanos , Ratones , Neoplasias Ováricas/genética , Eliminación de Secuencia , Proteínas Supresoras de Tumor/metabolismo
6.
Mol Cell ; 60(2): 280-93, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26474068

RESUMEN

We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN/genética , Subunidades de Proteína/genética , Proteína de Replicación A/genética , Ubiquitina-Proteína Ligasas/genética , Cromatina/química , Cromatina/metabolismo , ADN/química , Daño del ADN , Células HeLa , Recombinación Homóloga , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Subunidades de Proteína/metabolismo , Proteína de Replicación A/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
PLoS Genet ; 14(7): e1007486, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30024881

RESUMEN

Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ. Whether C-NHEJ competes with HR at a non-enzymatic mammalian replication fork barrier (RFB) remains unknown. We previously showed that conservative "short tract" gene conversion (STGC) induced by a chromosomal Tus/Ter RFB is a product of bidirectional replication fork stalling. This finding raises the possibility that Tus/Ter-induced STGC proceeds via a two-ended DSB intermediate. If so, Tus/Ter-induced STGC might be subject to competition by C-NHEJ. However, in contrast to the DSB response, where genetic ablation of C-NHEJ stimulates HR, we report here that Tus/Ter-induced HR is unaffected by deletion of either of two C-NHEJ genes, Xrcc4 or Ku70. These results show that Tus/Ter-induced HR does not entail the formation of a two-ended DSB to which C-NHEJ has competitive access. We found no evidence that the alternative end-joining factor, DNA polymerase θ, competes with Tus/Ter-induced HR. We used chromatin-immunoprecipitation to compare Rad51 recruitment to a Tus/Ter RFB and to a neighboring site-specific DSB. Rad51 accumulation at Tus/Ter was more intense and more sustained than at a DSB. In contrast to the DSB response, Rad51 accumulation at Tus/Ter was restricted to within a few hundred base pairs of the RFB. Taken together, these findings suggest that the major DNA structures that bind Rad51 at a Tus/Ter RFB are not conventional DSBs. We propose that Rad51 acts as an "early responder" at stalled forks, binding single stranded daughter strand gaps on the arrested lagging strand, and that Rad51-mediated fork remodeling generates HR intermediates that are incapable of Ku binding and therefore invisible to the C-NHEJ machinery.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Autoantígeno Ku/metabolismo , Recombinasa Rad51/metabolismo , Animales , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Autoantígeno Ku/genética , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones , Mutación , Recombinasa Rad51/genética , ADN Polimerasa theta
8.
Nature ; 510(7506): 556-9, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24776801

RESUMEN

Replication fork stalling can promote genomic instability, predisposing to cancer and other diseases. Stalled replication forks may be processed by sister chromatid recombination (SCR), generating error-free or error-prone homologous recombination (HR) outcomes. In mammalian cells, a long-standing hypothesis proposes that the major hereditary breast/ovarian cancer predisposition gene products, BRCA1 and BRCA2, control HR/SCR at stalled replication forks. Although BRCA1 and BRCA2 affect replication fork processing, direct evidence that BRCA gene products regulate homologous recombination at stalled chromosomal replication forks is lacking, due to a dearth of tools for studying this process. Here we report that the Escherichia coli Tus/Ter complex can be engineered to induce site-specific replication fork stalling and chromosomal HR/SCR in mouse cells. Tus/Ter-induced homologous recombination entails processing of bidirectionally arrested forks. We find that the Brca1 carboxy (C)-terminal tandem BRCT repeat and regions of Brca1 encoded by exon 11-two Brca1 elements implicated in tumour suppression-control Tus/Ter-induced homologous recombination. Inactivation of either Brca1 or Brca2 increases the absolute frequency of 'long-tract' gene conversions at Tus/Ter-stalled forks, an outcome not observed in response to a site-specific endonuclease-mediated chromosomal double-strand break. Therefore, homologous recombination at stalled forks is regulated differently from homologous recombination at double-strand breaks arising independently of a replication fork. We propose that aberrant long-tract homologous recombination at stalled replication forks contributes to genomic instability and breast/ovarian cancer predisposition in BRCA mutant cells.


Asunto(s)
Proteína BRCA1/metabolismo , Replicación del ADN , Proteínas de Escherichia coli/metabolismo , Recombinación Homóloga , Animales , Proteína BRCA1/química , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Roturas del ADN de Doble Cadena , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Exones/genética , Conversión Génica/genética , Inestabilidad Genómica/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Ratones
9.
10.
PLoS Genet ; 12(11): e1006410, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27832076

RESUMEN

A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Recombinación Homóloga/genética , Neoplasias Ováricas/genética , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Cromátides/genética , Reparación del ADN por Unión de Extremidades/genética , Femenino , Conversión Génica/genética , Inestabilidad Genómica/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones , Neoplasias Ováricas/patología
11.
Proc Natl Acad Sci U S A ; 113(26): E3676-85, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298342

RESUMEN

The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes.


Asunto(s)
Daño del ADN , Fase S , Schizosaccharomyces/genética , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Daño del ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Metilmetanosulfonato/toxicidad , Fase S/efectos de los fármacos , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645103

RESUMEN

Collision of a replication fork with a DNA nick is thought to generate a one-ended break, fostering genomic instability. Collision of the opposing converging fork with the nick could, in principle, form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells. Flp-nickase-induced HR entails two-ended, BRCA2/RAD51-dependent short tract gene conversion (STGC), BRCA2/RAD51-independent long tract gene conversion, and discoordinated two-ended invasions. HR induced by a replication-independent break and by the Flp-nickase differ in their dependence on BRCA1 . To determine the origin of the second DNA end during Flp-nickase-induced STGC, we blocked the opposing fork using a site-specific Tus/ Ter replication fork barrier. Flp-nickase-induced STGC remained robust and two-ended. Thus, collision of a single replication fork with a Flp-nick can trigger two-ended HR, possibly reflecting replicative bypass of lagging strand nicks. This response may limit genomic instability during replication of a nicked DNA template.

13.
Cancer Cell ; 5(4): 375-87, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15093544

RESUMEN

Activating mutations in the ras oncogene are not considered sufficient to induce abnormal cellular proliferation in the absence of cooperating oncogenes. We demonstrate that the conditional expression of an endogenous K-ras(G12D) allele in murine embryonic fibroblasts causes enhanced proliferation and partial transformation in the absence of further genetic abnormalities. Interestingly, K-ras(G12D)-expressing fibroblasts demonstrate attenuation and altered regulation of canonical Ras effector signaling pathways. Widespread expression of endogenous K-ras(G12D) is not tolerated during embryonic development, and directed expression in the lung and GI tract induces preneoplastic epithelial hyperplasias. Our results suggest that endogenous oncogenic ras is sufficient to initiate transformation by stimulating proliferation, while further genetic lesions may be necessary for progression to frank malignancy.


Asunto(s)
Transformación Celular Neoplásica , Anomalías Congénitas/genética , Fibroblastos/patología , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes ras/fisiología , Neoplasias/genética , Animales , Ciclo Celular , División Celular , Senescencia Celular , Anomalías Congénitas/patología , Cruzamientos Genéticos , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Embrión de Mamíferos/citología , Femenino , Fibroblastos/metabolismo , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neoplasias/patología , Células Madre/patología , Proteína p14ARF Supresora de Tumor/genética , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Virales/metabolismo
14.
STAR Protoc ; 3(3): 101529, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35928003

RESUMEN

Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) even with optimization may give low signal-to-background ratio and spatial resolution. Here, we adapted Cleavage Under Targets and Release Using Nuclease (CUT&RUN) (originally developed by the Henikoff group) to develop CUT&RUN-qPCR. By studying the recruitment of selected proteins (but amenable to other proteins), we find that CUT&RUN-qPCR is more sensitive and gives better spatial resolution than ChIP-qPCR. For complete details on the use and execution of this protocol, please refer to Skene et al. (2018) and Skene and Henikoff (2017).


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Cromosomas/metabolismo , Endonucleasas , Nucleasa Microcócica/metabolismo
15.
STAR Protoc ; 3(3): 101551, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36042887

RESUMEN

In this protocol, we use CRISPR/Cas9 to generate large deletions of the entire coding region of a gene of interest, generating a hemizygous cell line. Next, we systematically engineer precise in-frame deletions within the intact wild-type allele, facilitating study of multi-domain proteins. The optimized protocol described here allows us to rapidly screen for effective sgRNA pairs and to engineer either an in-frame deletion or a frameshift mutation in high frequencies in mouse embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Panday et al. (2021).


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias de Ratones , Animales , Sistemas CRISPR-Cas/genética , Ratones , Eliminación de Secuencia
16.
Nat Struct Mol Biol ; 29(8): 801-812, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941380

RESUMEN

Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown. Here, we study the role of mouse SLX4 in HR triggered by a site-specific chromosomal DNA-protein replication fork barrier formed by the Escherichia coli-derived Tus-Ter complex. We show that SLX4-XPF is required for Tus-Ter-induced HR but not for error-free HR induced by a replication-independent DSB. We additionally uncover a role for SLX4-XPF in DSB-induced long-tract gene conversion, an error-prone HR pathway related to break-induced replication. Notably, Slx4 and Xpf mutants that are defective for Tus-Ter-induced HR are hypersensitive to ICLs and also to the DNA-protein cross-linking agents 5-aza-2'-deoxycytidine and zebularine. Collectively, these findings show that SLX4-XPF can process DNA-protein fork barriers for HR and that the Tus-Ter system recapitulates this process.


Asunto(s)
Anemia de Fanconi , Recombinación Homóloga , Animales , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Anemia de Fanconi/metabolismo , Ratones
17.
Breast Cancer Res ; 13(5): 314, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21996371

RESUMEN

The hereditary breast and ovarian cancer predisposition genes BRCA1 and BRCA2 account for the lion's share of heritable breast cancer risk in the human population. Loss of function of either gene results in defective homologous recombination (HR) and triggers genomic instability, accelerating breast tumorigenesis. A long-standing hypothesis proposes that BRCA1 and BRCA2 mediate HR following attempted replication across damaged DNA, ensuring error-free processing of the stalled replication fork. A recent paper describes a new replication fork protective function of BRCA2, which appears to collaborate with its HR function to suppress genomic instability.


Asunto(s)
Proteína BRCA2/fisiología , Neoplasias de la Mama/genética , Replicación del ADN , Recombinación Homóloga , Proteína BRCA1/metabolismo , Replicación del ADN/efectos de los fármacos , Femenino , Inestabilidad Genómica , Humanos , Hidroxiurea/farmacología , Mutación
18.
Methods Mol Biol ; 2153: 329-353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840790

RESUMEN

Site-specific replication fork barriers (RFBs) have proven valuable tools for studying mechanisms of repair at sites of replication fork stalling in prokaryotes and yeasts. We adapted the Escherichia coli Tus-Ter RFB for use in mammalian cells and used it to trigger site-specific replication fork stalling and homologous recombination (HR) at a defined chromosomal locus in mammalian cells. By comparing HR responses induced at the Tus-Ter RFB with those induced by a site-specific double-strand break (DSB), we have begun to uncover how the mechanisms of mammalian stalled fork repair differ from those underlying the repair of a replication-independent DSB. Here, we outline how to transiently express the Tus protein in mES cells, how to use flow cytometry to score conservative and aberrant repair outcomes, and how to quantify distinct repair outcomes in response to replication fork stalling at the inducible Tus-Ter chromosomal RFB.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células Madre Embrionarias de Ratones/citología , Animales , Células Cultivadas , Roturas del ADN de Doble Cadena , Replicación del ADN , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Citometría de Flujo , Recombinación Homóloga , Ratones , Células Madre Embrionarias de Ratones/química , Transfección
19.
Curr Opin Genet Dev ; 71: 154-162, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34464818

RESUMEN

Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression. Many alternative pathways have evolved to respond to these different types of replication stress. Among these, the homologous recombination (HR) pathway plays an important role, protecting the stalled fork and processing it for repair. Here, we review recent advances in our understanding of how blocked replication forks in vertebrate cells can be processed for recombination and for replication restart.


Asunto(s)
ADN Helicasas , Replicación del ADN , Cromosomas , ADN Helicasas/genética , Replicación del ADN/genética
20.
Cancer Res ; 80(14): 3033-3045, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32193285

RESUMEN

PARP inhibitor monotherapies are effective to treat patients with breast, ovary, prostate, and pancreatic cancer with BRCA1 mutations, but not to the much more frequent BRCA wild-type cancers. Searching for strategies that would extend the use of PARP inhibitors to BRCA1-proficient tumors, we found that the stability of BRCA1 protein following ionizing radiation (IR) is maintained by postphosphorylational prolyl-isomerization adjacent to Ser1191 of BRCA1, catalyzed by prolyl-isomerase Pin1. Extinction of Pin1 decreased homologous recombination (HR) to the level of BRCA1-deficient cells. Pin1 stabilizes BRCA1 by preventing ubiquitination of Lys1037 of BRCA1. Loss of Pin1, or introduction of a BRCA1-mutant refractory to Pin1 binding, decreased the ability of BRCA1 to localize to repair foci and augmented IR-induced DNA damage. In vitro growth of HR-proficient breast, prostate, and pancreatic cancer cells were modestly repressed by olaparib or Pin1 inhibition using all-trans retinoic acid (ATRA), while combination treatment resulted in near-complete block of cell proliferation. In MDA-MB-231 xenografts and triple-negative breast cancer patient-derived xenografts, either loss of Pin1 or ATRA treatment reduced BRCA1 expression and sensitized breast tumors to olaparib. Together, our study reveals that Pin1 inhibition, with clinical widely used ATRA, acts as an effective HR disrupter that sensitizes BRCA1-proficient tumors to PARP inhibition. SIGNIFICANCE: PARP inhibitors have been limited to treat homologous recombination-deficient tumors. All-trans retinoic acid, by inhibiting Pin1 and destabilizing BRCA1, extends benefit of PARP inhibitors to patients with homologous recombination-proficient tumors.See related commentary by Cai, p. 2977.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Mama Triple Negativas , Proteína BRCA1/genética , Línea Celular Tumoral , Femenino , Humanos , Masculino , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Isomerasa de Peptidilprolil , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA