RESUMEN
Organ-on-chip (OoC) technology has led to in vitro models with many new possibilities compared to conventional in vitro and in vivo models. In this review, the potential of OoC models to improve the prediction of human oral bioavailability and intrinsic clearance is discussed, with a focus on the functionality of the models and the application in current drug development practice. Multi-OoC models demonstrating the application for pharmacokinetic (PK) studies are summarized and existing challenges are identified. Physiological parameters for a minimal viable platform of a multi-OoC model to study PK are provided, together with PK specific read-outs and recommendations for relevant reference compounds to validate the model. Finally, the translation to in vivo PK profiles is discussed, which will be required to routinely apply OoC models during drug development.
Asunto(s)
Desarrollo de Medicamentos , Modelos Biológicos , Humanos , Disponibilidad Biológica , Sistemas MicrofisiológicosRESUMEN
Organic anion transporters (OATs) 1 and 3 are, besides being uptake transporters, key in several cellular metabolic pathways. The underlying mechanisms are largely unknown. Hence, we used human conditionally immortalized proximal tubule epithelial cells (ciPTEC) overexpressing OAT1 or OAT3 to gain insight into these mechanisms. In ciPTEC-OAT1 and -OAT3, extracellular lactate levels were decreased (by 77% and 71%, respectively), while intracellular ATP levels remained unchanged, suggesting a shift towards an oxidative phenotype upon OAT1 or OAT3 overexpression. This was confirmed by increased respiration of ciPTEC-OAT1 and -OAT3 (1.4-fold), a decreased sensitivity to respiratory inhibition, and characterized by a higher demand on mitochondrial oxidative capacity. In-depth profiling of tricarboxylic acid (TCA) cycle metabolites revealed reduced levels of intermediates converging into α-ketoglutarate in ciPTEC-OAT1 and -OAT3, which via 2-hydroxyglutarate metabolism explains the increased respiration. These interactions with TCA cycle metabolites were in agreement with metabolomic network modeling studies published earlier. Further studies using OAT or oxidative phosphorylation (OXPHOS) inhibitors confirmed our idea that OATs are responsible for increased use and synthesis of α-ketoglutarate. In conclusion, our results indicate an increased α-ketoglutarate efflux by OAT1 and OAT3, resulting in a metabolic shift towards an oxidative phenotype.
Asunto(s)
Metabolismo Energético , Túbulos Renales Proximales/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Células HEK293 , Humanos , Ácidos Cetoglutáricos/metabolismoRESUMEN
Drug-induced kidney injury in medicinal compound development accounts for over 20% of clinical trial failures and involves damage to different nephron segments, mostly the proximal tubule. Yet, currently applied cell models fail to reliably predict nephrotoxicity; neither are such models easy to establish. Here, we developed a novel three-dimensional (3D) nephrotoxicity platform on the basis of decellularized rat kidney scaffolds (DS) recellularized with conditionally immortalized human renal proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1). A 5-day SDS-based decellularization protocol was used to generate DS, of which 100-µm slices were cut and used for cell seeding. After 8 days of culturing, recellularized scaffolds (RS) demonstrated 3D-tubule formation along with tubular epithelial characteristics, including drug transporter function. Exposure of RS to cisplatin (CDDP), tenofovir (TFV), or cyclosporin A (CsA) as prototypical nephrotoxic drugs revealed concentration-dependent reduction in cell viability, as assessed by PrestoBlue and Live/Dead staining assays. This was most probably attributable to specific uptake of CDDP by the organic cation transporter 2 (OCT2), TFV through organic anion transporter 1 (OAT1), and CsA competing for P-glycoprotein-mediated efflux. Compared with 2D cultures, RS showed an increased sensitivity to cisplatin and tenofovir toxicity after 24-hour exposure (9 and 2.2 fold, respectively). In conclusion, we developed a physiologically relevant 3D nephrotoxicity screening platform that could be a novel tool in drug development.
Asunto(s)
Cisplatino/toxicidad , Riñón/citología , Riñón/efectos de los fármacos , Tenofovir/toxicidad , Andamios del Tejido , Animales , Antineoplásicos/toxicidad , Antivirales/toxicidad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Riñón/metabolismo , Masculino , Ratas , Ratas WistarRESUMEN
Cisplatin is a cytostatic drug used for treatment of solid organ tumors. The main adverse effect is organic cation transporter 2 (OCT2)-mediated nephrotoxicity, observed in 30% of patients. The contribution of other renal drug transporters is elusive. Here, cisplatin-induced toxicity was evaluated in human-derived conditionally immortalized proximal tubule epithelial cells (ciPTEC) expressing renal drug transporters, including OCT2 and organic anion transporters 1 (OAT1) or 3 (OAT3). Parent ciPTEC demonstrated OCT2-dependent cisplatin toxicity (TC50 34 ± 1 µM after 24-hour exposure), as determined by cell viability. Overexpression of OAT1 and OAT3 resulted in reduced sensitivity to cisplatin (TC50 45 ± 6 and 64 ± 11 µM after 24-hour exposure, respectively). This effect was independent of OAT-mediated transport, as the OAT substrates probenecid and diclofenac did not influence cytotoxicity. Decreased cisplatin sensitivity in OAT-expressing cells was associated directly with a trend toward reduced intracellular cisplatin accumulation, explained by reduced OCT2 gene expression and activity. This was evaluated by Vmax of the OCT2-model substrate ASP+ (23.5 ± 0.1, 13.1 ± 0.3, and 21.6 ± 0.6 minutes-1 in ciPTEC-parent, ciPTEC-OAT1, and ciPTEC-OAT3, respectively). Although gene expression of cisplatin efflux transporter multidrug and toxin extrusion 1 (MATE1) was 16.2 ± 0.3-fold upregulated in ciPTEC-OAT1 and 6.1 ± 0.7-fold in ciPTEC-OAT3, toxicity was unaffected by the MATE substrate pyrimethamine, suggesting that MATE1 does not play a role in the current experimental set-up. In conclusion, OAT expression results in reduced cisplatin sensitivity in renal proximal tubule cells, explained by reduced OCT2-mediated uptake capacity. In vitro drug-induced toxicity studies should consider models that express both OCT and OAT drug transporters.
Asunto(s)
Cisplatino/farmacología , Expresión Génica/fisiología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Probenecid/farmacologíaRESUMEN
Drug-induced nephrotoxicity is a major concern in the clinic and hampers the use of available treatments as well as the development of innovative medicines. It is typically discovered late during drug development, which reflects a lack of in vitro nephrotoxicity assays available that can be employed readily in early drug discovery, to identify and hence steer away from the risk. Here, we report the development of a high content screening assay in ciPTEC-OAT1, a proximal tubular cell line that expresses several relevant renal transporters, using five fluorescent dyes to quantify cell health parameters. We used a validation set of 62 drugs, tested across a relevant concentration range compared to their exposure in humans, to develop a model that integrates multi-parametric data and drug exposure information, which identified most proximal tubular toxic drugs tested (sensitivity 75%) without any false positives (specificity 100%). Due to the relatively high throughput (straight-forward assay protocol, 96-well format, cost-effective) the assay is compatible with the needs in the early drug discovery setting to enable identification, quantification and subsequent mitigation of the risk for nephrotoxicity.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Riñón/efectos de los fármacos , Pruebas de Toxicidad/métodos , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Colorantes Fluorescentes , Humanos , Enfermedades Renales/inducido químicamente , Túbulos Renales/citología , Modelos Teóricos , Proteína 1 de Transporte de Anión Orgánico/genética , Reproducibilidad de los ResultadosRESUMEN
The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies.
Asunto(s)
Cetuximab/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Metotrexato/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Bencimidazoles/metabolismo , Supervivencia Celular/efectos de los fármacos , Glutatión/análogos & derivados , Glutatión/metabolismo , Células HEK293 , Humanos , Compuestos de Metilmercurio/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismoRESUMEN
Apical transport is key in renal function, and the activity of efflux transporters and receptor-mediated endocytosis is pivotal in this process. The conditionally immortalized proximal tubule epithelial cell line (ciPTEC) endogenously expresses these systems. Here, we used ciPTEC to investigate the activity of three major efflux transporters, viz., breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp), as well as protein uptake through receptor-mediated endocytosis, using a fluorescence-based setup for transport assays. To this end, cells were exposed to Hoechst33342, chloromethylfluorescein-diacetate (CMFDA), and calcein-AM in the presence or absence of model inhibitors for BCRP (KO143), P-gp (PSC833), or MRPs (MK571). Overexpression cell lines MDCKII-BCRP and MDCKII-P-gp were used as positive controls, and membrane vesicles overexpressing one transporter were used to determine substrate and inhibitor specificities. Receptor-mediated endocytosis was investigated by determining the intracellular accumulation of fluorescently labeled receptor-associated protein (RAP-GST). In ciPTEC, BCRP and P-gp showed similar expressions and activities, whereas MRP4 was more abundantly expressed. Hoechst33342, GS-MF, and calcein are retained in the presence of KO143, MK571, and PSC833, showing clearly redundancy between the transporters. Noteworthy is the fact that both KO143 and MK571 can block BCRP, P-gp, and MRPs, whereas PSC833 appears to be a potent inhibitor for BCRP and P-gp but not the MRPs. Furthermore, ciPTEC accumulates RAP-GST in intracellular vesicles in a dose- and time-dependent manner, which was reduced in megalin-deficient cells. In conclusion, fluorescent-probe-based assays are fast and reproducible in determining apical transport mechanisms, in vitro. We demonstrate that typical substrates and inhibitors are not specific for the designated transporters, reflecting the complex interactions that can take place in vivo. The set of tools we describe are also compatible with innovative kidney culture models and allows studying transport mechanisms that are central to drug absorption, disposition, and detoxification.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Células Cultivadas , Perros , Endocitosis/fisiología , Fluorescencia , Humanos , Túbulos Renales Proximales/citología , Células de Riñón Canino Madin DarbyRESUMEN
Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.
Asunto(s)
Enfermedad de Dent/fisiopatología , Endocitosis/fisiología , Endosomas/química , Células Epiteliales/fisiología , Túbulos Renales Proximales/citología , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Enfermedad de Dent/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal , Mutación/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismoRESUMEN
Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss-of-function mutations in either PKD1 or PKD2 genes, which encode polycystin-1 (TRPP1) and polycystin-2 (TRPP2), respectively. Increased activity of the mammalian target of rapamycin (mTOR) pathway has been shown in PKD1 mutants but is less documented for PKD2 mutants. Clinical trials using mTOR inhibitors were disappointing, while the AMP-activated kinase (AMPK) activator, metformin is not yet tested in patients. Here, we studied the mTOR activity and its upstream pathways in several human and mouse renal cell models with either siRNA or stable knockdown and with overexpression of TRPP2. Our data reveal for the first time differences between TRPP1 and TRPP2 deficiency. In contrast to TRPP1 deficiency, TRPP2-deficient cells did neither display excessive activation of the mTOR-kinase complex nor inhibition of AMPK activity, while ERK1/2 and Akt activity were similarly affected among TRPP1- and TRPP2-deficient cells. Furthermore, cell proliferation was more pronounced in TRPP1 than in TRPP2-deficient cells. Interestingly, combining low concentrations of rapamycin and metformin was more effective for inhibiting mTOR complex 1 activity in TRPP1-deficient cells than either drug alone. Our results demonstrate a synergistic effect of a combination of low concentrations of drugs suppressing the increased mTOR activity in TRPP1-deficient cells. This novel insight can be exploited in future clinical trials to optimize the efficiency and avoiding side effects of drugs in the treatment of ADPKD patients with PKD1 mutations. Furthermore, as TRPP2 deficiency by itself did not affect mTOR signaling, this may underlie the differences in phenotype, and genetic testing has to be considered for selecting patients for the ongoing trials.
Asunto(s)
Metformina/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/deficiencia , Animales , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Regulación hacia ArribaRESUMEN
The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I. There is considerable debate whether in vivo type II epithelial-to-mesenchymal transition (EMT) is involved in organ fibrosis. Lineage tracing experiments by various groups show opposing data concerning the relative contribution of epithelial cells to the pool of myofibroblasts. We hypothesized that EMT-derived cells might directly contribute to collagen deposition. To study this, EMT was induced in human epithelial lung and renal cell lines in vitro by means of TGF-ß1 stimulation, and we compared the collagen type I (COL1A1) expression levels of transdifferentiated cells with that of myofibroblasts obtained by TGF-ß1 stimulation of human dermal and lung fibroblasts. COL1A1 expression levels of transdifferentiated epithelial cells appeared to be at least one to two orders of magnitude lower than that of myofibroblasts. This was confirmed at immunohistochemical level: in contrast to myofibroblasts, collagen type I deposition by EMT-derived cells was not or hardly detectable. We postulate that, even when type II EMT occurs in vivo, the direct contribution of EMT-derived cells to collagen accumulation is rather limited.
Asunto(s)
Colágeno Tipo I/metabolismo , Células Epiteliales/citología , Transición Epitelial-Mesenquimal/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Colágeno Tipo I/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Fibroblastos/citología , Fibrosis/metabolismo , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia ArribaRESUMEN
Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 µM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 µM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 µM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.
Asunto(s)
Acroleína/farmacología , Poliaminas Biogénicas/farmacología , Cationes/metabolismo , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Toxinas Biológicas/farmacología , Uremia/fisiopatología , Línea Celular , Guanidinas/farmacología , Humanos , Túbulos Renales Proximales/metabolismo , Transportador 2 de Cátion Orgánico , Compuestos de PiridinioRESUMEN
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.
Asunto(s)
Cisteamina/farmacología , Cistinosis/metabolismo , Glutatión/metabolismo , Túbulos Renales Proximales/metabolismo , Adenosina Trifosfato/metabolismo , Adolescente , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Niño , Preescolar , Células Epiteliales/metabolismo , Femenino , Humanos , Lactante , Masculino , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Cystinosis is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. In older patients cystinosis can mimic idiopathic nephrotic syndrome due to focal and segmental glomerulosclerosis. Measuring elevated white blood cell cystine content is the corner stone for the diagnosis. The diagnosis is confirmed by molecular analysis of the cystinosin gene. Corneal cystine crystals are invariably present in all patients with cystinosis after the age of 1 year. Treatment with the cystine depleting drug cysteamine should be initiated as soon as possible and continued lifelong to prolong renal function survival and protect extra-renal organs. This educational feature provides practical tools for the diagnosis and treatment of cystinosis.
Asunto(s)
Cisteamina/uso terapéutico , Cistinosis/diagnóstico , Cistinosis/tratamiento farmacológico , Diagnóstico Diferencial , Humanos , Riñón/patologíaRESUMEN
Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-ß-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).
Asunto(s)
Túbulos Renales Proximales , Dispositivos Laboratorio en un Chip , Animales , Interacciones Farmacológicas , Humanos , Riñón , Reproducibilidad de los ResultadosRESUMEN
Renal proximal tubules are highly sensitive to ischemic and toxic insults and are affected in diverse genetic disorders, of which nephropathic cystinosis is the most common. The disease is caused by mutations in the CTNS gene, encoding the lysosomal cystine transporter cystinosin, and is characterized by accumulation of cystine in the lysosomes throughout the body. In the majority of the patients, this leads to generalized proximal tubular dysfunction (also called DeToni-Debré-Fanconi syndrome) in the first year and progressive renal failure during the first decade. Extrarenal organs are affected by cystinosis as well, with clinical symptoms manifesting mostly after 10 yr of age. The cystine-depleting agent cysteamine significantly improves life expectancy of patients with cystinosis, but offers no cure, pointing to the complexity of the disease mechanism. In this review, current knowledge on the pathogenesis of cystinosis is described and placed in perspective of future research.
Asunto(s)
Cistina/metabolismo , Cistinosis/patología , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/fisiología , Cistinosis/etiología , Cistinosis/genética , Cistinosis/metabolismo , Humanos , Riñón/patología , Lisosomas/metabolismo , Proteinuria/complicacionesRESUMEN
Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and xenobiotics are the main functions of the renal proximal tubular (PT) epithelium. A human PT cell line expressing a range of functional transporters would help to augment current knowledge in renal physiology and pharmacology. We have established and characterized a conditionally immortalized PT epithelial cell line (ciPTEC) obtained by transfecting and subcloning cells exfoliated in the urine of a healthy volunteer. The PT origin of this line has been confirmed morphologically and by the expression of aminopeptidase N, zona occludens 1, aquaporin 1, dipeptidyl peptidase IV and multidrug resistance protein 4 together with alkaline phosphatase activity. ciPTEC assembles in a tight monolayer with limited diffusion of inulin-fluorescein-isothiocyanate. Concentration and time-dependent reabsorption of albumin via endocytosis has been demonstrated, together with sodium-dependent phosphate uptake. The expression and activity of apical efflux transporter p-glycoprotein and of baso-lateral influx transporter organic cation transporter 2 have been shown in ciPTEC. This established human ciPTEC expressing multiple endogenous organic ion transporters mimicking renal reabsorption and excretion represents a powerful tool for future in vitro transport studies in pharmacology and physiology.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Línea Celular Transformada , Túbulos Renales Proximales/patología , Proteínas de Transporte de Catión Orgánico/metabolismo , Fosfatasa Alcalina/metabolismo , Acuaporina 1/metabolismo , Antígenos CD13/metabolismo , Transformación Celular Neoplásica , Dipeptidil Peptidasa 4/metabolismo , Endocitosis/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportador 2 de Cátion Orgánico , Fosfoproteínas/metabolismo , Proteína de la Zonula Occludens-1RESUMEN
Nephropathic cystinosis (NC) is an autosomal recessive disorder caused by mutations of the CTNS gene that encodes for a cystine transmembrane transporter. Several mutations have been described in the coding and promoter regions of the CTNS gene in affected individuals. We selected three patients with NC from two unrelated families, in whom sequence analysis of the CTNS gene detected only one or no mutations. Total RNA was isolated from peripheral blood mononuclear cells or fibroblasts and CTNS transcripts were analyzed. We observed a skipping of exon 5 (85 bp) in two siblings and an intron 9 retention of 75 bp associated with partial replication of exon 9 in the third patient. Genomic DNA analysis of intron regions surrounding exon 5 showed a point mutation in the hypothetical lariat branch site of intron 4 at position -24 (c.141-24 T > C) in the first two patients and a duplication of 266 bp including a part of exon and intron 9 in the third patient. Analysis of CTNS gene transcripts allowed identification of mutations in patients in whom CTNS mutations could not be detected by traditional DNA sequencing. These results support the hypothesis that cystinosis is a monogenic disorder.
Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinosis/genética , Riñón/patología , Mutación Puntual , Empalme Alternativo , Preescolar , Cistinosis/patología , ADN/análisis , Análisis Mutacional de ADN , Femenino , Fibroblastos/química , Fibroblastos/patología , Duplicación de Gen , Humanos , Lactante , Leucocitos Mononucleares/química , Leucocitos Mononucleares/patología , MasculinoRESUMEN
BACKGROUND: Kidney disease modeling and assessment of drug-induced kidney injury can be advanced using three-dimensional (3D) microfluidic models that recapitulate in vivo characteristics. Fluid shear stress (FSS) has been depicted as main modulator improving in vitro physiology in proximal tubule epithelial cells (PTECs). We aimed to elucidate the role of FSS and primary cilia on transport activity and morphology in PTECs. METHODS: Human conditionally immortalized PTEC (ciPTEC-parent) was cultured in a microfluidic 3D device, the OrganoPlate, under a physiological peak FSS of 2.0 dyne/cm2 or low peak FSS of 0.5 dyne/cm2. Upon a 9-day exposure to FSS, albumin-FITC uptake, activity of P-glycoprotein (P-gp) and multidrug resistance-associated proteins 2/4 (MRP2/4), cytotoxicity and cell morphology were determined. RESULTS: A primary cilium knock-out cell model, ciPTEC-KIF3α-/-, was successfully established via CRISPR-Cas9 genome editing. Under physiological peak FSS, albumin-FITC uptake (pâ¯=â¯.04) and P-gp efflux (pâ¯=â¯.002) were increased as compared to low FSS. Remarkably, a higher albumin-FITC uptake (pâ¯=â¯.03) and similar trends in activity of P-gp and MRP2/4 were observed in ciPTEC-KIF3α-/-. FSS induced cell elongation corresponding with the direction of flow in both cell models, but had no effect on cyclosporine A-induced cytotoxicity. CONCLUSIONS: FSS increased albumin uptake, P-gp efflux and cell elongation, but this was not attributed to a mechanosensitive mechanism related to primary cilia in PTECs, but likely to microvilli present at the apical membrane. GENERAL SIGNIFICANCE: FSS-induced improvements in biological characteristics and activity in PTECs was not mediated through a primary cilium-related mechanism.
Asunto(s)
Lesión Renal Aguda/metabolismo , Cilios/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Transporte Biológico/efectos de los fármacos , Cilios/efectos de los fármacos , Ciclosporina/toxicidad , Células Epiteliales/efectos de los fármacos , Humanos , Túbulos Renales Proximales/metabolismo , Mecanotransducción Celular/genética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Resistencia al Corte , Estrés MecánicoRESUMEN
Autosomal dominant renal hypomagnesemia (OMIM 154020), associated with hypocalciuria, has been linked to a 121G to A mutation in the FXYD2 gene. To gain insight into the molecular mechanisms linking this mutation to the clinical phenotype, we studied isolated proximal tubular cells from urine of a patient and a healthy subject. Cells were immortalized and used to assess the effects of hypertonicity-induced overexpression of FXYD2 on amount, activity and apparent affinities for Na(+), K(+) and ATP of Na,K-ATPase. Both cell lines expressed mRNA for FXYD2a and FXYD2b, and patient cells contained both the wild-type and mutated codons. FXYD2 protein expression was lower in patient cells and could be increased in both cell lines upon culturing in hyperosmotic medium but to a lesser extent in patient cells. Similarly, hyperosmotic culturing increased Na,K-ATPase protein expression and ATP hydrolyzing activity but, again, to a lesser extent in patient cells. Apparent affinities of Na,K-ATPase for Na(+), K(+) and ATP did not differ between patient and control cells or after hyperosmotic induction. We conclude that human proximal tubular cells respond to a hyperosmotic challenge with an increase in FXYD2 and Na,K-ATPase protein expression, though to a smaller absolute extent in patient cells.
Asunto(s)
Riñón/metabolismo , Riñón/patología , Deficiencia de Magnesio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Western Blotting , Células Cultivadas , Niño , Humanos , Masculino , ATPasa Intercambiadora de Sodio-Potasio/genéticaRESUMEN
Antisense oligonucleotide therapy has been reported to be associated with renal injury. Here, the mechanism of reversible proteinuria was investigated by combining clinical, pre-clinical, and in vitro data. Urine samples were obtained from Duchenne muscular dystrophy (DMD) patients treated with drisapersen, a modified 2'O-methyl phosphorothioate antisense oligonucleotide (6 mg/kg). Urine and kidney tissue samples were collected from cynomolgus monkeys (Macaca fascicularis) dosed with drisapersen (39 weeks). Cell viability and protein uptake were evaluated in vitro using human conditionally immortalized proximal tubule epithelial cells (ciPTECs). Oligonucleotide treatment in DMD patients was associated with an increase in urinary alpha-1-microglobulin (A1M), which returned to baseline following treatment interruptions. In monkeys, increased urinary A1M correlated with dose-dependent accumulation of oligonucleotide in kidney tissue without evidence of tubular damage. Furthermore, oligonucleotides accumulated in the lysosomes of ciPTECs and reduced the absorption of A1M, albumin, and receptor-associated protein, but did not affect cell viability when incubated for up to 7 days. In conclusion, phosphorothioate oligonucleotides appear to directly compete for receptor-mediated endocytosis in proximal tubules. We postulate that oligonucleotide-induced low molecular weight proteinuria in patients is therefore a transient functional change and not indicative of tubular damage.