Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628359

RESUMEN

Maintaining a robust, stable source of energy for doing chemical and physical work is essential to all living organisms. In eukaryotes, metabolic energy (ATP) production and consumption occurs in two separate compartments, the mitochondrial matrix and the cytosol. As a result, understanding eukaryotic metabolism requires knowledge of energy metabolism in each compartment and how metabolism in the two compartments is coordinated. Central to energy metabolism is the adenylate energy state ([ATP]/[ADP][Pi]). ATP is synthesized by oxidative phosphorylation (mitochondrial matrix) and glycolysis (cytosol) and each compartment provides the energy to do physical work and to drive energetically unfavorable chemical syntheses. The energy state in the cytoplasmic compartment has been established by analysis of near equilibrium metabolic reactions localized in that compartment. In the present paper, analysis is presented for energy-dependent reactions localized in the mitochondrial matrix using data obtained from both isolated mitochondria and intact tissues. It is concluded that the energy state ([ATP]f/[ADP]f[Pi]) in the mitochondrial matrix, calculated from the free (unbound) concentrations, is not different from the energy state in the cytoplasm. Corollaries are: (1) ADP in both the cytosol and matrix is selectively bound and the free concentrations are much lower than the total measured concentrations; and (2) under physiological conditions, the adenylate energy states in the mitochondrial matrix and cytoplasm are not substantially different.


Asunto(s)
Adenosina Trifosfato , Eucariontes , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Citosol/metabolismo , Metabolismo Energético , Eucariontes/metabolismo
2.
Can J Anaesth ; 68(2): 214-225, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33174162

RESUMEN

PURPOSE: The kidney plays a central physiologic role as an oxygen sensor. Nevertheless, the direct mechanism by which this occurs is incompletely understood. We measured renal microvascular partial pressure of oxygen (PkO2) to determine the impact of clinically relevant conditions that acutely change PkO2 including hyperoxia and hemodilution. METHODS: We utilized two-wavelength excitation (red and blue spectrum) of the intravascular phosphorescent oxygen sensitive probe Oxyphor PdG4 to measure renal tissue PO2 in anesthetized rats (2% isoflurane, n = 6) under two conditions of altered arterial blood oxygen content (CaO2): 1) hyperoxia (fractional inspired oxygen 21%, 30%, and 50%) and 2) acute hemodilutional anemia (baseline, 25% and 50% acute hemodilution). The mean arterial blood pressure (MAP), rectal temperature, arterial blood gases (ABGs), and chemistry (radiometer) were measured under each condition. Blue and red light enabled measurement of PkO2 in the superficial renal cortex and deeper cortical and medullary tissue, respectively. RESULTS: PkO2 was higher in the superficial renal cortex (~ 60 mmHg, blue light) relative to the deeper renal cortex and outer medulla (~ 45 mmHg, red light). Hyperoxia resulted in a proportional increase in PkO2 values while hemodilution decreased microvascular PkO2 in a linear manner in both superficial and deeper regions of the kidney. In both cases (blue and red light), PkO2 correlated with CaO2 but not with MAP. CONCLUSION: The observed linear relationship between CaO2 and PkO2 shows the biological function of the kidney as a quantitative sensor of anemic hypoxia and hyperoxia. A better understanding of the impact of changes in PkO2 may inform clinical practices to improve renal oxygen delivery and prevent acute kidney injury.


RéSUMé: OBJECTIF: Les reins jouent un rôle physiologique central en tant que détecteurs d'oxygène. Cependant, le mécanisme direct de ce rôle n'est pas complètement compris. Nous avons mesuré la pression partielle d'oxygène microvasculaire rénal (PkO2) afin de déterminer l'impact de conditions pertinentes d'un point de vue clinique qui modifient de façon aiguë la PkO2, y compris l'hyperoxie et l'hémodilution. MéTHODE: Nous avons utilisé l'excitation à deux longueurs d'onde (spectres rouge et bleu) de la sonde phosphorescente, sensible à l'oxygène, intravasculaire Oxyphor PdG4 afin de mesurer la PO2 dans le tissu rénal de rats sous anesthésie (isoflurane 2 %, n = 6) dans deux conditions de contenu en oxygène du sang artériel (CaO2) altéré : 1) hyperoxie (fraction d'oxygène inspiré 21 %, 30 % et 50 %) et 2) anémie par hémodilution aiguë (valeurs de base, hémodilution aiguë 25 % et 50 %). La tension artérielle moyenne (TAM), la température rectale, les gaz sanguins artériels et la chimie (radiomètre) ont été mesurés dans chacune des conditions. Les lumières bleue et rouge ont permis de mesurer la PkO2 dans le cortex rénal superficiel et les tissus cortical et médullaire plus profonds, respectivement. RéSULTATS: La PkO2 était plus élevée dans le cortex rénal superficiel (~ 60 mmHg, lumière bleue) comparativement au cortex rénal plus profond et à la zone médullaire extérieure (~ 45 mmHg, lumière rouge). L'hyperoxie a entraîné une augmentation proportionnelle des valeurs de PkO2, alors que l'hémodilution a diminué la PkO2 microvasculaire de façon linéaire tant dans les régions rénales superficielles que plus profondes. Dans les deux cas (lumières bleue et rouge), la PkO2 était corrélée au CaO2 mais pas à la TAM. CONCLUSION: La relation linéaire observée entre le CaO2 et la PkO2 montre la fonction biologique du rein en tant que détecteur quantitatif de l'hypoxie anémique et de l'hyperoxie. Une meilleure compréhension de l'impact des changements de la PkO2 pourrait guider les pratiques cliniques afin d'améliorer la distribution d'oxygène aux reins et prévenir l'insuffisance rénale aiguë.


Asunto(s)
Hemodilución , Hiperoxia , Animales , Riñón , Oxígeno/metabolismo , Consumo de Oxígeno , Ratas
3.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R799-R812, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32130021

RESUMEN

Sensing changes in blood oxygen content ([Formula: see text]) is an important physiological role of the kidney; however, the mechanism(s) by which the kidneys sense and respond to changes in [Formula: see text] are incompletely understood. Accurate measurements of kidney tissue oxygen tension ([Formula: see text]) may increase our understanding of renal oxygen-sensing mechanisms and could inform decisions regarding the optimal fluid for intravascular volume resuscitation to maintain renal perfusion. In some clinical settings, starch solution may be nephrotoxic, possibly due to inadequacy of tissue oxygen delivery. We hypothesized that hemodilution with starch colloid solutions would reduce [Formula: see text] to a more severe degree than other diluents. Anesthetized Sprague-Dawley rats (n = 77) were randomized to undergo hemodilution with either colloid (6% hydroxyethyl starch or 5% albumin), crystalloid (0.9% saline), or a sham procedure (control) (n = 13-18 rats/group). Data were analyzed by ANOVA with significance assigned at P < 0.05. After hemodilution, mean arterial pressure (MAP) decreased marginally in all groups, while hemoglobin (Hb) and [Formula: see text] decreased in proportion to the degree of hemodilution. Cardiac output was maintained in all groups after hemodilution. [Formula: see text] decreased in proportion to the reduction in Hb in all treatment groups. At comparably reduced Hb, and maintained arterial oxygen values, hemodilution with starch resulted in larger decreases in [Formula: see text] relative to animals hemodiluted with albumin or saline (P < 0.008). Renal medullary erythropoietin (EPO) mRNA levels increased more prominently, relative to other hypoxia-regulated molecules (GLUT-1, GAPDH, and VEGF). Our data demonstrate that the kidney acts as a biosensor of reduced [Formula: see text] following hemodilution and that [Formula: see text] may provide a quantitative signal for renal cellular responsiveness to acute anemia. Evidence of a more severe reduction in [Formula: see text] following hemodilution with starch colloid solution suggests that tissue hypoxia may contribute to starch induced renal toxicity.


Asunto(s)
Derivados de Hidroxietil Almidón/farmacología , Riñón/metabolismo , Oxígeno/fisiología , Albúminas , Animales , Coloides , Masculino , Consumo de Oxígeno , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Almidón
4.
J Physiol ; 595(23): 7023-7038, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29023737

RESUMEN

Oxidative phosphorylation provides most of the ATP that higher animals and plants use to support life and is responsible for setting and maintaining metabolic homeostasis. The pathway incorporates three consecutive near equilibrium steps for moving reducing equivalents between the intramitochondrial [NAD+ ]/[NADH] pool to molecular oxygen, with irreversible reduction of oxygen to bound peroxide at cytochrome c oxidase determining the net flux. Net flux (oxygen consumption rate) is determined by demand for ATP, with feedback by the energy state ([ATP]/[ADP][Pi ]) regulating the pathway. This feedback affects the reversible steps equally and independently, resulting in the rate being coupled to ([ATP]/[ADP][Pi ])3 . With increasing energy state, oxygen consumption decreases rapidly until a threshold is reached, above which there is little further decrease. In most cells, [ATP] and [Pi ] are much higher than [ADP] and change in [ADP] is primarily responsible for the change in energy state. As a result, the rate of ATP synthesis, plotted against [ADP], remains low until [ADP] reaches about 30 µm and then increases rapidly with further increase in [ADP]. The dependencies on energy state and [ADP] near the threshold can be fitted by the Hill equation with a Hill coefficients of about -2.6 and 4.2, respectively. The homeostatic set point for metabolism is determined by the threshold, which can be modulated by the PO2 and intramitochondrial [NAD+ ]/[NADH]. The ability of oxidative phosphorylation to precisely set and maintain metabolic homeostasis is consistent with it being permissive of, and essential to, development of higher plants and animals.


Asunto(s)
Fosforilación Oxidativa , Animales , Homeostasis , Humanos , Mitocondrias/metabolismo
5.
Am J Physiol Endocrinol Metab ; 310(8): E633-E642, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26837809

RESUMEN

The behavior of oxidative phosphorylation predicted by a model for the mechanism and kinetics of cytochrome c oxidase is compared with the experimentally observed behavior during the work-to-rest transition in skeletal muscle. For both experiment and model, when work stops, the increase in creatine phosphate and decrease in creatine and inorganic phosphate concentrations ([CrP], [Cr], and [Pi]) begin immediately. The rate of change for each is maximal and then progressively slows as the increasing energy state ([ATP]/[ADP][Pi]) suppresses the rate of oxidative phosphorylation. The time courses can be reasonably fitted to single exponential curves with similar time constants. The energy state in the working and resting steady states at constant Po2 are dependent on the intramitochondrial [NAD+]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]). The rate of change in [CrP] is linearly correlated with [CrP] and with [Pi] and [Cr]. The time constant for [CrP] increase in the resting and working steady states, and the rate of decrease in oxygen consumption are similarly dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). Myoglobin strongly buffers intracellular Po2 below ∼15 torr, truncating the low end of the oxygen distribution in the tissue and suppressing intra- and intermyocyte oxygen gradients. The predictions of the model are consistent with the experimental data throughout the work/rest transition, providing valuable insights into the regulation of cellular and tissue metabolism.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Fosfocreatina/metabolismo , Adenosina Difosfato , Adenosina Trifosfato , Creatina , Metabolismo Energético , Humanos , Modelos Biológicos , Mioglobina/metabolismo , Oxígeno/metabolismo , Descanso
6.
J Can Dent Assoc ; 82: g2, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27548665

RESUMEN

Epstein-Barr virus (EBV) is ubiquitous: over 90% of the adult population is infected with this virus. EBV is capable of infecting both B lymphocytes and epithelial cells throughout the body including the head and neck region. Transmission occurs mainly by exchange of saliva. The infection is asymptomatic or mild in children but, in adolescents and young adults, it causes infectious mononucleosis, a self-limiting disease characterized by lethargy, sore throat, fever and lymphadenopathy. Once established, the virus often remains latent and people become lifelong carriers without experiencing disease. However, in some people, the latent virus is capable of causing malignant tumours, such as nasopharyngeal carcinoma and various B- and T-cell lymphomas, at sites including the head, neck and oropharyngeal region. As lymphoma is the second-most common malignant disease of the head, neck and oral region after squamous cell carcinoma, oral health care workers including dentists and specialists have a responsibility to carry out a thorough clinical examination of this anatomical region with a view to identifying and diagnosing lesions that may represent lymphomas. Early detection allows early treatment resulting in better prognosis. The focus of this review is on the morphology, transmission and carcinogenic properties of EBV and clinical and diagnostic aspects of a range of EBV-associated malignancies occurring in the head, neck and oral region. As carcinogenic agents, viruses contribute to a significant proportion of the global cancer burden: approximately 15% of all human cancers, worldwide, are attributable to viruses.1,2 Serologic and epidemiologic studies are providing mounting evidence of an etiologic association between viruses and head and neck malignancies.3 To update oral and maxillofacial surgeons and oral medicine specialists and raise awareness of this association, we recently reviewed the evidence of the etiologic role of human papillomavirus in oral disease.4 In this paper, we review the current state of knowledge of the association of Epstein-Barr virus (EBV) with malignant diseases in the head and neck region.


Asunto(s)
Carcinoma de Células Escamosas/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Neoplasias de Cabeza y Cuello/virología , Herpesvirus Humano 4/patogenicidad , Adolescente , Humanos , Neoplasias Nasofaríngeas
7.
Am J Physiol Endocrinol Metab ; 309(9): E793-801, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26394666

RESUMEN

Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis, and understanding that program is essential for an integrated view of cellular and tissue metabolism. The behavior predicted by a mechanism-based model for oxidative phosphorylation is compared with that experimentally measured for skeletal muscle when work is initiated. For the model, initiation of work is simulated by imposing a rate of ATP utilization of either 0.6 (equivalent of 13.4 ml O2·100 g tissue(-1)·min(-1) or 6 µmol O2·g tissue(-1)·min(-1)) or 0.3 mM ATP/s. Creatine phosphate ([CrP]) decrease, both experimentally measured and predicted by the model, can be fit to a single exponential. Increase in ATP synthesis begins immediately but can show a "lag period," during which the rate accelerates. The length of the lag period is similar for both experiment and model; in the model, the lag depends on intramitochondrial [NAD(+)]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]) as well as the resting [CrP]/[Cr]. For in vivo conditions, increase in oxygen consumption may be linearly correlated with a decrease in [CrP] and an increase in inorganic phosphate ([Pi]) and [Cr]. The decrease in [CrP], resting and working steady state [CrP], and the increase in oxygen consumption are dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). The metabolic behavior predicted by the model is consistent with available experimental measurements in muscle upon initiation of work, with the model providing valuable insight into how metabolic homeostasis is set and maintained.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Descanso/fisiología , Animales , Metabolismo Basal , Simulación por Computador , Creatina/metabolismo , Homeostasis , Modelos Biológicos , Actividad Motora/fisiología , Fosforilación Oxidativa , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Ratas
8.
Am J Physiol Endocrinol Metab ; 308(6): E506-17, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25605644

RESUMEN

Evidence is presented that the rate and equilibrium constants in mitochondrial oxidative phosphorylation set and maintain metabolic homeostasis in eukaryotic cells. These internal constants determine the energy state ([ATP]/[ADP][Pi]), and the energy state maintains homeostasis through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The energy state is maintained with high precision (to ∼1 part in 10(10)), and the control system can respond to transient changes in energy demand (ATP utilization) of more than 100 times the resting rate. Epigenetic and environmental factors are able to "fine-tune" the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust across-platform control of metabolism, which is essential to cellular differentiation and the evolution of complex organisms. A model of oxidative phosphorylation is presented, for which the steady-state rate expression has been derived and computer programmed. The behavior of oxidative phosphorylation predicted by the model is shown to fit the experimental data available for isolated mitochondria as well as for cells and tissues. This includes measurements from several different mammalian tissues as well as from insect flight muscle and plants. The respiratory chain and oxidative phosphorylation is remarkably similar for all higher plants and animals. This is consistent with the efficient synthesis of ATP and precise control of metabolic homeostasis provided by oxidative phosphorylation being a key to cellular differentiation and the evolution of structures with specialized function.


Asunto(s)
Metabolismo Energético/fisiología , Células Eucariotas/metabolismo , Homeostasis/fisiología , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/metabolismo , Modelos Teóricos , Fosforilación Oxidativa
9.
Neurochem Res ; 39(11): 2085-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25082120

RESUMEN

Ischemic brain injury continues to be of major concern in patients undergoing cardiopulmonary bypass (CPB) surgery for congenital heart disease. Striatum and hippocampus are particularly vulnerable to injury during these processes. Our hypothesis is that the neuronal injury resulting from CPB and the associated circulatory arrest can be at least partly ameliorated by pre-treatment with granulocyte colony stimulating factor (G-CSF). Fourteen male newborn piglets were assigned to three groups: deep hypothermic circulatory arrest (DHCA), DHCA with G-CSF, and sham-operated. The first two groups were placed on CPB, cooled to 18 °C, subjected to 60 min of DHCA, re-warmed and recovered for 8-9 h. At the end of experiment, the brains were perfused, fixed and cut into 10 µm transverse sections. Apoptotic cells were visualized by in situ DNA fragmentation assay (TUNEL), with the density of injured cells expressed as a mean number ± SD per mm(2). The number of injured cells in the striatum and CA1 and CA3 regions of the hippocampus increased significantly following DHCA. In the striatum, the increase was from 0.46 ± 0.37 to 3.67 ± 1.57 (p = 0.002); in the CA1, from 0.11 ± 0.19 to 5.16 ± 1.57 (p = 0.001), and in the CA3, from 0.28 ± 0.25 to 2.98 ± 1.82 (p = 0.040). Injection of G-CSF prior to bypass significantly reduced the number of injured cells in the striatum and CA1 region, by 51 and 37 %, respectively. In the CA3 region, injured cell density did not differ between the G-CSF and control group. In a model of hypoxic brain insult associated with CPB, G-CSF significantly reduces neuronal injury in brain regions important for cognitive functions, suggesting it can significantly improve neurological outcomes from procedures requiring DHCA.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Paro Circulatorio Inducido por Hipotermia Profunda , Factor Estimulante de Colonias de Granulocitos/farmacología , Animales , Animales Recién Nacidos , Puente Cardiopulmonar/métodos , Paro Circulatorio Inducido por Hipotermia Profunda/métodos , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hipotermia Inducida/métodos , Isquemia/tratamiento farmacológico , Masculino , Porcinos
10.
Proc Natl Acad Sci U S A ; 108(42): 17544-9, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21976486

RESUMEN

Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.


Asunto(s)
Anemia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Adaptación Fisiológica , Anemia/genética , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Gasto Cardíaco , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Oxígeno/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Resistencia Vascular , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
11.
Anesth Analg ; 116(3): 649-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23400988

RESUMEN

BACKGROUND: Acute ß-blockade has been associated with a dose-dependent increase in adverse outcomes, including stroke and mortality. Acute blood loss contributes to the incidence of these adverse events. In an attempt to link the risks of acute blood loss and ß-blockade, animal studies have demonstrated that acute ß-blockade impairs cerebral perfusion after hemodilution. We expanded on these findings by testing the hypothesis that acute ß-blockade with a highly ß(1)-specific antagonist (nebivolol) causes dose-dependent cerebral hypoxia during hemodilution. METHODS: Anesthetized rats and mice were randomized to receive vehicle or nebivolol (1.25 or 2.5 mg/kg) IV before hemodilution to a hemoglobin concentration near 60 g/L. Drug levels, heart rate (HR), cardiac output (CO), regional cerebral blood flow (rCBF, laser Doppler), and microvascular brain Po(2) (P(Br)O(2), G2 Oxyphor) were measured before and after hemodilution. Endothelial nitric oxide synthase (NOS), neuronal NOS (nNOS), inducible NOS, and hypoxia inducible factor (HIF)-1α were assessed by Western blot. HIF-α expression was also assessed using an HIF-(ODD)-luciferase mouse model. Data were analyzed using analysis of variance with significance assigned at P < 0.05, and corrected P values are reported for all post hoc analyses. RESULTS: Nebivolol treatment resulted in dose-specific plasma drug levels. In vehicle-treated rats, hemodilution increased CO and rCBF (P < 0.010) whereas P(Br)O(2) decreased to 45.8 ± 18.7 mm Hg (corrected P < 0.001; 95% CI 29.4-69.7). Both nebivolol doses comparably reduced HR and attenuated the CO response to hemodilution (P < 0.012). Low-dose nebivolol did not impair rCBF or further reduce P(Br)O(2) after hemodilution. High-dose nebivolol attenuated the rCBF response to hemodilution and caused a further reduction in P(Br)O(2) to 28.4 ± 9.6 mm Hg (corrected P = 0.019; 95% CI 17.4-42.7). Both nebivolol doses increased brain endothelial NOS protein levels. Brain HIF-1α, inducible NOS, and nNOS protein levels and brain HIF-luciferase activity were increased in the high-dose nebivolol group after hemodilution (P < 0.032). CONCLUSIONS: Our data demonstrate that nebivolol resulted in a dose-dependent decrease in cerebral oxygen delivery after hemodilution as reflected by a decrease in brain tissue Po(2) and an increase in hypoxic protein responses (HIF-1α and nNOS). Low-dose nebivolol treatment did not result in worsened tissue hypoxia after hemodilution, despite comparable effects on HR and CO. These data support the hypothesis that acute ß-blockade with a highly ß(1)-specific antagonist causes a dose-dependent impairment in cerebral perfusion during hemodilution.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/administración & dosificación , Benzopiranos/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Etanolaminas/farmacología , Hemodilución/métodos , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Nebivolol , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Resultado del Tratamiento
12.
Adv Exp Med Biol ; 789: 51-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23852476

RESUMEN

Phosphorescence quenching and visible lightguide spectrophotometry were used to measure brain cortex oxygen partial pressure and skin oxygen saturation, respectively, during stepwise haemorrhage and re-transfusion in four 4-7-day-old anaesthetised piglets. In three cases, the effect of administration of adrenalin (epinephrine) was investigated. Brain cortex partial pressure was measured using a conventional phosphorescence pO2 probe (bclocpO2) and using a self-contained phosphorescence microsensor (bcmicropO2). Peripheral tissue oxygen saturation was measured on the skin of the abdomen (abSsO2) and the distal right foreleg (flSsO2) using visible lightguide spectrophotometry. Haemorrhage of 65 ml reduced mean arterial blood pressure (MABP) from 75.5 ± 11.0 mmHg (mean ± standard deviation) to 42 ± 2.6 mmHg. Mean bclocpO2 fell from 30.1 ± 3.1 to 13.1 ± 2.5 mmHg and mean bcmicropO2 fell from 33.8 ± 11.4 to 13.3 ± 9.5 mmHg. abSsO2 and flSsO2 values fell from 47.4 ± 8.1 % and 43.6 ± 10.9 %, respectively, to 21.9 ± 5.5 % and 23.8 ± 14.0 %. Infusion of adrenalin produced a mean transient increase in MABP to 137 ± 2.6 mmHg, falling to 75.7 ± 16.3 mmHg within 3 min. bclocpO2 also increased to 24.1 ± 14.6 mmHg, but there were no significant changes in bcmicropO, abSsO2 or flSsO2. Following reinfusion all parameters returned to values that were not statistically different from their pre-haemorrhage values. The dynamic recordings of all the oxygenation parameters indicated that they were sensitive indicators of the degree of haemorrhage during the experiments.


Asunto(s)
Corteza Cerebral/metabolismo , Oxígeno/metabolismo , Choque Hemorrágico/metabolismo , Piel/metabolismo , Porcinos/fisiología , Animales , Presión Arterial/efectos de los fármacos , Presión Arterial/fisiología , Corteza Cerebral/efectos de los fármacos , Epinefrina/farmacología , Presión Parcial , Piel/efectos de los fármacos
13.
Am J Physiol Endocrinol Metab ; 302(1): E87-E102, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21952036

RESUMEN

It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ∼13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ∼10 pmol·min(-1)·islet(-1). Our data suggest that impaired ß-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.


Asunto(s)
Bencenoacetamidas/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Activadores de Enzimas/farmacología , Glucoquinasa/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Adulto , Animales , Señalización del Calcio/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida , Femenino , Péptido 1 Similar al Glucagón/análogos & derivados , Glucoquinasa/química , Glucólisis/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Fosforilación Oxidativa/efectos de los fármacos , Péptidos/farmacología , Ratas , Especificidad de la Especie , Técnicas de Cultivo de Tejidos , Ponzoñas/farmacología
14.
Anal Chem ; 83(22): 8756-65, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21961699

RESUMEN

We report the synthesis, calibration, and examples of application of two new phosphorescent probes, Oxyphor R4 and Oxyphor G4, optimized specifically for in vivo oxygen imaging by phosphorescence quenching. These "protected" dendritic probes can operate in either albumin-rich (blood plasma) or albumin-free (interstitial space) environments at all physiological oxygen concentrations, from normoxic to deep hypoxic conditions. Oxyphors R4 and G4 are derived from phosphorescent Pd-meso-tetra-(3,5-dicarboxyphenyl)-porphyrin (PdP) or Pd-meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzoporphyrin (PdTBP), respectively, and possess features common for protected dendritic probes, i.e., hydrophobic dendritic encapsulation of phosphorescent metalloporphyrins and hydrophilic PEGylated periphery. The new Oxyphors are highly soluble in aqueous environments and do not permeate biological membranes. The probes were calibrated under physiological conditions (pH 6.4-7.8) and temperatures (22-38 °C), showing high stability, reproducibility of signals, and lack of interactions with biological solutes. Oxyphor G4 was used to dynamically image intravascular and interstitial oxygenation in murine tumors in vivo. The physiological relevance of the measurements was demonstrated by dynamically recording changes in tissue oxygenation during application of anesthesia (isofluorane). These experiments revealed that changes in isofluorane concentration significantly affect tissue oxygenation.


Asunto(s)
Fibrosarcoma/diagnóstico , Sustancias Luminiscentes , Metaloporfirinas , Neoplasias Experimentales/diagnóstico , Oximetría , Animales , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/química , Mediciones Luminiscentes , Metaloporfirinas/síntesis química , Metaloporfirinas/química , Ratones , Ratones Endogámicos C3H , Ratones Desnudos , Oxígeno/análisis , Oxígeno/metabolismo
15.
Photochem Photobiol Sci ; 10(6): 1056-65, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21409208

RESUMEN

Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy.


Asunto(s)
Dendrímeros/química , Sustancias Luminiscentes/química , Oxígeno/química , Porfirinas/química , Animales , Línea Celular Tumoral , Éter de Dihematoporfirina/toxicidad , Luz , Sustancias Luminiscentes/toxicidad , Ratones , Paladio/química , Polietilenglicoles/química , Porfirinas/toxicidad , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Espectrometría de Fluorescencia
16.
Pediatr Crit Care Med ; 12(2): e79-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20601925

RESUMEN

OBJECTIVE: To compare the effects of pH-stat and α-stat management before deep hypothermic circulatory arrest followed by a period of low-flow (two rates) cardiopulmonary bypass on cortical oxygenation and selected regulatory proteins: Bax, Bcl-2, Caspase-3, and phospho-Akt. DESIGN: Piglets were placed on cardiopulmonary bypass, cooled with pH-stat or α-stat management to 18 °C over 30 mins, subjected to 30-min deep hypothermic circulatory arrest and 1-hr low flow at 20 mL/kg/min (LF-20) or 50 mL/kg/min (LF-50), rewarmed to 37 °C, separated from cardiopulmonary bypass, and recovered for 6 hrs. SUBJECTS: Newborn piglets, 2-5 days old, assigned randomly to experimental groups. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Cortical oxygen was measured by oxygen-dependent quenching of phosphorescence; proteins were measured by Western blots. The means from six experiments ± sem are presented as % of α-stat. Significance was determined by Student's t test. For LF-20, cortical oxygenation was similar for α-stat and pH-stat, whereas for LF-50, it was significantly better using pH-stat. For LF-20, the measured proteins were not different except for Bax in the cortex (214 ± 24%, p = .006) and hippocampus (118 ± 6%, p = .024) and Caspase 3 in striatum (126% ± 7%, p = .019). For LF-50, in pH-stat group: In cortex, Bax and Caspase-3 were lower (72 ± 8%, p = .001 and 72 ± 10%, p = .004, respectively) and pAkt was higher (138 ± 12%, p = .049). In hippocampus, Bcl-2 and Bax were not different but pAkt was higher (212 ± 37%, p = .005) and Caspase 3 was lower (84 ± 4%, p = .018). In striatum, Bax and pAkt did not differ, but Bcl-2 increased (146 ± 11%, p = .001) and Caspase-3 decreased (81 ± 11%, p = .042). CONCLUSIONS: In this deep hypothermic circulatory arrest-LF model, when flow was 20 mL/kg/min, there was little difference between α-stat and pH-stat management. However, for LF-50, pH-stat management resulted in better cortical oxygenation during recovery and Bax, Bcl-2, pAk, and Caspase-3 changes were consistent with lesser activation of proapoptotic signaling with pH-stat than with α-stat.


Asunto(s)
Análisis de los Gases de la Sangre , Encéfalo/metabolismo , Puente Cardiopulmonar/métodos , Paro Circulatorio Inducido por Hipotermia Profunda , Concentración de Iones de Hidrógeno , Animales , Proteínas/metabolismo , Distribución Aleatoria , Porcinos
17.
Adv Exp Med Biol ; 701: 53-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21445769

RESUMEN

Oxygen dependent quenching of phosphorescence has been used to measure the oxygen pressure in both the vasculature of the microcirculation and the interstitial spaces of resting muscle tissue. Oxygen sensitive molecules were either dissolved in the blood (intravascular space) or micro-injected into the interstitial space and the distributions, histograms, of the oxygen pressure were measured. The mean oxygen pressures are higher in the blood than in the interstitial space but the oxygen pressures in the lowest 10% of the two spaces were not significantly different, indicating there is minimal (< 1 mm Hg) oxygen gradient between the two spaces in the capillary bed.


Asunto(s)
Líquido Extracelular/metabolismo , Músculo Esquelético/metabolismo , Neoplasias Experimentales/metabolismo , Oxígeno/metabolismo , Descanso/fisiología , Vigilia/fisiología , Anestesia , Animales , Ratones , Músculo Esquelético/irrigación sanguínea , Neoplasias Experimentales/irrigación sanguínea
18.
Front Physiol ; 12: 658997, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967829

RESUMEN

Living organisms require continuous input of energy for their existence. As a result, life as we know it is based on metabolic processes that extract energy from the environment and make it available to support life (energy metabolism). This metabolism is based on, and regulated by, the underlying thermodynamics. This is important because thermodynamic parameters are stable whereas kinetic parameters are highly variable. Thermodynamic control of metabolism is exerted through near equilibrium reactions that determine. (1) the concentrations of metabolic substrates for enzymes that catalyze irreversible steps and (2) the concentrations of small molecules (AMP, ADP, etc.) that regulate the activity of irreversible reactions in metabolic pathways. The result is a robust homeostatic set point (-ΔGATP) with long term (virtually unlimited) stability. The rest of metabolism and its regulation is constrained to maintain this set point. Thermodynamic control is illustrated using the ATP producing part of glycolysis, glyceraldehyde-3-phosphate oxidation to pyruvate. Flux through the irreversible reaction, pyruvate kinase (PK), is primarily determined by the rate of ATP consumption. Change in the rate of ATP consumption causes mismatch between use and production of ATP. The resulting change in [ATP]/[ADP][Pi], through near equilibrium of the reactions preceding PK, alters the concentrations of ADP and phosphoenolpyruvate (PEP), the substrates for PK. The changes in ADP and PEP alter flux through PK appropriately for restoring equality of ATP production and consumption. These reactions appeared in the very earliest lifeforms and are hypothesized to have established the set point for energy metabolism. As evolution included more metabolic functions, additional layers of control were needed to integrate new functions into existing metabolism without changing the homeostatic set point. Addition of gluconeogenesis, for example, resulted in added regulation to PK activity to prevent futile cycling; PK needs to be turned off during gluconeogenesis because flux through the enzyme would waste energy (ATP), subtracting from net glucose synthesis and decreasing overall efficiency.

19.
Physiol Rep ; 9(12): e14890, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34184431

RESUMEN

BACKGROUND: The mechanisms whereby inhibitors of sodium-glucose linked cotransporter-2 (SGLT2) exert their nephroprotective effects in patients with diabetes are incompletely understood but have been hypothesized to include improved tissue oxygen tension within the renal cortex. The impact of SGLT2 inhibition is likely complex and region specific within the kidney. We hypothesize that SGLT2 inhibitors have differential effects on renal tissue oxygen delivery and consumption in specific regions of the diabetic kidney, including the superficial cortex, containing SGLT2-rich components of proximal tubules, versus the deeper cortex and outer medulla, containing predominantly SGLT1 receptors. METHODS: We measured glomerular filtration rate (GFR), microvascular kidney oxygen tension (Pk O2 ), erythropoietin (EPO) mRNA, and reticulocyte count in diabetic rats (streptozotocin) treated with the SGLT2 inhibitor, dapagliflozin. Utilizing phosphorescence quenching by oxygen and an intravascular oxygen sensitive probe (Oxyphor PdG4); we explored the effects of SGLT2 inhibition on Pk O2 in a region-specific manner, in vivo, in diabetic and non-diabetic rats. Superficial renal cortical or deeper cortical and outer medullary Pk O2 were measured utilizing excitations with blue and red light wavelengths, respectively. RESULTS: In diabetic rats treated with dapagliflozin, measurement within the superficial cortex (blue light) demonstrated no change in Pk O2 . By contrast, measurements in the deeper cortex and outer medulla (red light) demonstrated a significant reduction in Pk O2 in dapagliflozin treated diabetic rats (p = 0.014). Consistent with these findings, GFR was decreased, hypoxia-responsive EPO mRNA levels were elevated and reticulocyte counts were increased with SGLT2 inhibition in diabetic rats (p < 0.05 for all). CONCLUSIONS: These findings indicate that microvascular kidney oxygen tension is maintained in the superficial cortex but reduced in deeper cortical and outer medullary tissue, possibly due to the regional impact of SGLT-2 inhibition on tissue metabolism. This reduction in deeper Pk O2 had biological impact as demonstrated by increased renal EPO mRNA levels and circulating reticulocyte count.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucósidos/farmacología , Riñón/efectos de los fármacos , Oxígeno/sangre , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Compuestos de Bencidrilo/uso terapéutico , Eritropoyetina/sangre , Tasa de Filtración Glomerular/efectos de los fármacos , Glucósidos/uso terapéutico , Riñón/irrigación sanguínea , Riñón/metabolismo , Masculino , Microvasos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
20.
Am J Physiol Endocrinol Metab ; 299(3): E475-85, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20606076

RESUMEN

Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca(2+), and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP(3) receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35-40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca(2+) release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 microM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca(2+), and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion.


Asunto(s)
Acetilcolina/antagonistas & inhibidores , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/fisiología , Ácido Palmítico/farmacología , Acetilcolina/metabolismo , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA