Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Malar J ; 17(1): 285, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30081911

RESUMEN

BACKGROUND: Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. METHODS: 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). RESULTS: 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480-0.0846). Ne estimates were generally small (124.2-1920.3). CONCLUSIONS: A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.


Asunto(s)
Anopheles/genética , Genoma de los Insectos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Marcadores Genéticos , Densidad de Población , Análisis de Secuencia de ADN , Uganda
2.
PLoS One ; 16(6): e0252997, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34185784

RESUMEN

Dengue, Zika, chikungunya and yellow fever viruses continue to be a major public health burden. Aedes mosquitoes, the primary vectors responsible for transmitting these viral pathogens, continue to flourish due to local challenges in vector control management. Yeast interfering RNA-baited larval lethal ovitraps are being developed as a novel biorational control tool for Aedes mosquitoes. This intervention circumvents increasing issues with insecticide resistance and poses no known threat to non-target organisms. In an effort to create public awareness of this alternative vector control strategy, gain stakeholder feedback regarding product design and acceptance of the new intervention, and build capacity for its potential integration into existing mosquito control programs, this investigation pursued community stakeholder engagement activities, which were undertaken in Trinidad and Tobago. Three forms of assessment, including paper surveys, community forums, and household interviews, were used with the goal of evaluating local community stakeholders' knowledge of mosquitoes, vector control practices, and perceptions of the new technology. These activities facilitated evaluation of the hypothesis that the ovitraps would be broadly accepted by community stakeholders as a means of biorational control for Aedes mosquitoes. A comparison of the types of stakeholder input communicated through use of the three assessment tools highlighted the utility and merit of using each tool for assessing new global health interventions. Most study participants reported a general willingness to purchase an ovitrap on condition that it would be affordable and safe for human health and the environment. Stakeholders provided valuable input on product design, distribution, and operation. A need for educational campaigns that provide a mechanism for educating stakeholders about vector ecology and management was highlighted. The results of the investigation, which are likely applicable to many other Caribbean nations and other countries with heavy arboviral disease burdens, were supportive of supplementation of existing vector control strategies through the use of the yeast RNAi-based ovitraps.


Asunto(s)
Aedes/fisiología , Control de Mosquitos/instrumentación , Mosquitos Vectores/virología , ARN Interferente Pequeño/genética , Saccharomyces cerevisiae/genética , Virosis/prevención & control , Aedes/virología , Animales , Femenino , Humanos , Control de Mosquitos/métodos , Oviposición , Participación de los Interesados , Trinidad y Tobago , Virosis/epidemiología , Virosis/transmisión
3.
Curr Opin Insect Sci ; 40: 18-23, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32516723

RESUMEN

Mosquito vectors in the genera Anopheles, Aedes, and Culex transmit a variety of medically important pathogens. Current vector control tools are reaching the limits of their effectiveness, necessitating the introduction of innovative vector control technologies. RNAi, which facilitates functional characterization of mosquito genes in the laboratory, could one day be applied as a new method of vector control. Recent advances in the oral administration of microbial-based systems for delivery of species-specific interfering RNA pesticides to mosquitoes may facilitate translation of this technology to the field. Oral RNAi-based pesticides represent a new class of biorational pesticides that could combat increased global incidence of insecticide resistance and which could one day become critical components of integrated human disease vector mosquito control programs.


Asunto(s)
Culicidae/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Interferencia de ARN , Animales
4.
Evol Appl ; 13(2): 417-431, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31993086

RESUMEN

Documenting isolation is notoriously difficult for species with vast polymorphic populations. High proportions of shared variation impede estimation of connectivity, even despite leveraging information from many genetic markers. We overcome these impediments by combining classical analysis of neutral variation with assays of the structure of selected variation, demonstrated using populations of the principal African malaria vector Anopheles gambiae. Accurate estimation of mosquito migration is crucial for efforts to combat malaria. Modeling and cage experiments suggest that mosquito gene drive systems will enable malaria eradication, but establishing safety and efficacy requires identification of isolated populations in which to conduct field testing. We assess Lake Victoria islands as candidate sites, finding one island 30 km offshore is as differentiated from mainland samples as populations from across the continent. Collectively, our results suggest sufficient contemporary isolation of these islands to warrant consideration as field-testing locations and illustrate shared adaptive variation as a useful proxy for connectivity in highly polymorphic species.

5.
Parasit Vectors ; 11(1): 246, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661226

RESUMEN

BACKGROUND: Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. RESULTS: Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. CONCLUSIONS: The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies.


Asunto(s)
Anopheles/clasificación , Anopheles/genética , Variación Genética , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Animales , Análisis por Conglomerados , ADN Mitocondrial/genética , Genotipo , Lagos , Repeticiones de Microsatélite , Análisis de Secuencia de ADN , Análisis Espacio-Temporal , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA