RESUMEN
Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.
Asunto(s)
MicroARNs , ARN Circular , Regulación de la Expresión Génica/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN/genética , ARN/metabolismo , ARN Circular/genética , ARN no Traducido , ARN Viral , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismoRESUMEN
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genéticaRESUMEN
Circular RNAs are generated at low levels from many protein-coding genes. Liu et al. now reveal that many of these transcripts bind and inhibit the double-stranded RNA (dsRNA)-dependent kinase PKR. Upon viral infection, circular RNAs are globally degraded to release PKR, which becomes activated to aid in the immune response.
Asunto(s)
ARN Circular , eIF-2 Quinasa , Inmunidad Innata , ARN BicatenarioRESUMEN
Despite the numerous sequencing methods available, the diversity in RNA size and chemical modification makes it difficult to capture all RNAs in a cell. We developed a method that combines quasi-random priming with template switching to construct sequencing libraries from RNA molecules of any length and with any type of 3' modifications, allowing for the sequencing of virtually all RNA species. Our ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to identify and quantify all classes of coding and non-coding RNAs. With LIDAR, we comprehensively characterized the transcriptomes of mouse embryonic stem cells, neural progenitor cells, mouse tissues, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared with traditional ligation-dependent sequencing methods and uncovered tDRs with blocked 3' ends that had previously escaped detection. Therefore, LIDAR can capture all RNAs in a sample and uncover RNA species with potential regulatory functions.
Asunto(s)
ARN de Transferencia , Animales , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ratones , Análisis de Secuencia de ARN/métodos , Masculino , Células Madre Embrionarias de Ratones/metabolismo , Transcriptoma , Células-Madre Neurales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Espermatozoides/metabolismoRESUMEN
The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.
Asunto(s)
Núcleo Celular , Neuronas , Biosíntesis de Proteínas , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neuronas/metabolismo , Ratones , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genéticaRESUMEN
The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.
Asunto(s)
Proteínas de Drosophila , Terminación de la Transcripción Genética , Animales , ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/genética , Factores de Transcripción/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogasterRESUMEN
Transcription in eukaryotes produces a number of long noncoding RNAs (lncRNAs). Two of these, MALAT1 and Menß, generate a tRNA-like small RNA in addition to the mature lncRNA. The stability of these tRNA-like small RNAs and bona fide tRNAs is monitored by the CCA-adding enzyme. Whereas CCA is added to stable tRNAs and tRNA-like transcripts, a second CCA repeat is added to certain unstable transcripts to initiate their degradation. Here, we characterize how these two scenarios are distinguished. Following the first CCA addition cycle, nucleotide binding to the active site triggers a clockwise screw motion, producing torque on the RNA. This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle. Intriguingly, with the CCA-adding enzyme acting as a molecular vise, the RNAs proofread themselves through differential responses to its interrogation between stable and unstable substrates.
Asunto(s)
Archaeoglobus fulgidus/enzimología , Mitocondrias/enzimología , ARN Nucleotidiltransferasas/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Archaeoglobus fulgidus/metabolismo , Secuencia de Bases , Dominio Catalítico , Humanos , Mitocondrias/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética , Estabilidad del ARN , ARN Pequeño no Traducido/metabolismoRESUMEN
Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.
Asunto(s)
ARN Polimerasa I , Factores de Transcripción , Humanos , Ratones , Animales , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Ribosómico/genética , Transcripción Genética , ADN Ribosómico/genética , ARN , CromatinaRESUMEN
The transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25- to 60-nt-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, 15%-20% of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, we present evidence that Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Elongación de la Transcripción Genética , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , ARN Polimerasa II/genética , ARN Mensajero/genéticaRESUMEN
Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.
Asunto(s)
Codón Iniciador/genética , Resistencia a Múltiples Medicamentos/genética , Ribosomas/genética , Elongación de la Transcripción Genética/efectos de los fármacos , Cicloheximida/farmacología , Factor 4G Eucariótico de Iniciación/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Células HEK293 , Células HeLa , Humanos , Inhibidores de la Síntesis de la Proteína/farmacologíaRESUMEN
Cellular homeostasis requires transcriptional outputs to be coordinated, and many events post-transcription initiation can dictate the levels and functions of mature transcripts. To systematically identify regulators of inducible gene expression, we performed high-throughput RNAi screening of the Drosophila Metallothionein A (MtnA) promoter. This revealed that the Integrator complex, which has a well-established role in 3' end processing of small nuclear RNAs (snRNAs), attenuates MtnA transcription during copper stress. Integrator complex subunit 11 (IntS11) endonucleolytically cleaves MtnA transcripts, resulting in premature transcription termination and degradation of the nascent RNAs by the RNA exosome, a complex also identified in the screen. Using RNA-seq, we then identified >400 additional Drosophila protein-coding genes whose expression increases upon Integrator depletion. We focused on a subset of these genes and confirmed that Integrator is bound to their 5' ends and negatively regulates their transcription via IntS11 endonuclease activity. Many noncatalytic Integrator subunits, which are largely dispensable for snRNA processing, also have regulatory roles at these protein-coding genes, possibly by controlling Integrator recruitment or RNA polymerase II dynamics. Altogether, our results suggest that attenuation via Integrator cleavage limits production of many full-length mRNAs, allowing precise control of transcription outputs.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Regulación de la Expresión Génica , Metalotioneína/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/metabolismo , Animales , Línea Celular , Cobre/toxicidad , Endorribonucleasas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Unión Proteica , División del ARN , Estrés Fisiológico/efectos de los fármacosRESUMEN
A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.
Asunto(s)
MicroARNs , Estabilidad del ARN , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , ARN/genética , ARN/metabolismo , ARN Circular/metabolismo , Humanos , Animales , RatonesRESUMEN
Circular RNAs (circRNAs) are generated from many protein-coding genes. Most accumulate in the cytoplasm, but how circRNA localization or nuclear export is controlled remains unclear. Using RNAi screening, we found that depletion of the Drosophila DExH/D-box helicase Hel25E results in nuclear accumulation of long (>800-nucleotide), but not short, circRNAs. The human homologs of Hel25E similarly regulate circRNA localization, as depletion of UAP56 (DDX39B) or URH49 (DDX39A) causes long and short circRNAs, respectively, to become enriched in the nucleus. These data suggest that the lengths of mature circRNAs are measured to dictate the mode of nuclear export.
Asunto(s)
Transporte Activo de Núcleo Celular/genética , Drosophila melanogaster/genética , ARN/genética , ARN/metabolismo , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Línea Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Variación Genética , Células HeLa , Humanos , Transporte de Proteínas/genética , ARN CircularRESUMEN
In this issue of Molecular Cell, Legnini et al. (2017) and Pamudurti et al. (2017) demonstrate that endogenous circular RNAs may generate proteins, thereby expanding the eukaryotic proteome and revealing novel modes of cap-independent translation.
Asunto(s)
Proteínas , Ribosomas , Humanos , Biosíntesis de Proteínas , ARN MensajeroRESUMEN
Many eukaryotic genes generate linear mRNAs and circular RNAs, but it is largely unknown how the ratio of linear to circular RNA is controlled or modulated. Using RNAi screening in Drosophila cells, we identify many core spliceosome and transcription termination factors that control the RNA outputs of reporter and endogenous genes. When spliceosome components were depleted or inhibited pharmacologically, the steady-state levels of circular RNAs increased while expression of their associated linear mRNAs concomitantly decreased. Upon inhibiting RNA polymerase II termination via depletion of the cleavage/polyadenylation machinery, circular RNA levels were similarly increased. This is because readthrough transcripts now extend into downstream genes and are subjected to backsplicing. In total, these results demonstrate that inhibition or slowing of canonical pre-mRNA processing events shifts the steady-state output of protein-coding genes toward circular RNAs. This is in part because nascent RNAs become directed into alternative pathways that lead to circular RNA production.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores del ARN/biosíntesis , Empalme del ARN , ARN Mensajero/biosíntesis , ARN/biosíntesis , Empalmosomas/genética , Transcripción Genética , Animales , Línea Celular , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/metabolismo , Lacasa/biosíntesis , Lacasa/genética , ARN/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN , ARN Circular , ARN Mensajero/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Empalmosomas/metabolismo , Terminación de la Transcripción Genética , TransfecciónRESUMEN
Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity.
Asunto(s)
Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Tolerancia Inmunológica , Inmunidad Innata , Intrones , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/inmunología , ARN/genética , ARN/inmunología , Animales , Secuencia de Bases , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Proteína 58 DEAD Box/metabolismo , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Tolerancia Inmunológica/genética , Inmunidad Innata/genética , Ratones , Conformación de Ácido Nucleico , Unión Proteica , Células RAW 264.7 , ARN/biosíntesis , ARN/química , ARN Circular , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Inmunológicos , Empalmosomas/inmunología , Empalmosomas/metabolismo , TransfecciónRESUMEN
Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Asunto(s)
Fenómenos Fisiológicos Celulares/genética , Eucariontes/genética , Biosíntesis de Proteínas/genética , Codón Iniciador/genética , Isoformas de Proteínas/genética , Estrés Fisiológico/genéticaRESUMEN
The Integrator complex is conserved across metazoans and controls the fate of many nascent RNAs transcribed by RNA polymerase II (RNAPII). Among the 14 subunits of Integrator is an RNA endonuclease that is crucial for the biogenesis of small nuclear RNAs and enhancer RNAs. Integrator is further employed to trigger premature transcription termination at many protein-coding genes, thereby attenuating gene expression. Integrator thus helps to shape the transcriptome and ensure that genes can be robustly induced when needed. The molecular functions of Integrator subunits beyond the RNA endonuclease remain poorly understood, but some can act independently of the multisubunit complex. We highlight recent molecular insights into Integrator and propose how misregulation of this complex may lead to developmental defects and disease.
Asunto(s)
ARN Polimerasa II , ARN , Animales , Humanos , ARN/genética , ARN/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética/genéticaRESUMEN
Eukaryotic mRNAs were long thought to only translate a single protein product, but it is now recognized that many mRNAs can also encode small open reading frames (ORFs). In this issue of The EMBO Journal, Wu et al characterized small ORFs in the 3' untranslated regions (3' UTRs) of human and zebrafish mRNAs and found that many are indeed translated. The peptides encoded by these downstream ORFs (dORFs) are often poorly conserved across evolution, but many dORFs are nonetheless functional, as the act of their translation can promote translation of the canonical ORF.
Asunto(s)
Proteínas , Pez Cebra , Regiones no Traducidas 3'/genética , Animales , Humanos , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Pez Cebra/genéticaRESUMEN
Interactions between noncoding RNAs and chromatin proteins play important roles in gene regulation, but the molecular details of most of these interactions are unknown. Using protein-RNA photocrosslinking and mass spectrometry on embryonic stem cell nuclei, we identified and mapped, at peptide resolution, the RNA-binding regions in â¼800 known and previously unknown RNA-binding proteins, many of which are transcriptional regulators and chromatin modifiers. In addition to known RNA-binding motifs, we detected several protein domains previously unknown to function in RNA recognition, as well as non-annotated and/or disordered regions, suggesting that many functional protein-RNA contacts remain unexplored. We identified RNA-binding regions in several chromatin regulators, including TET2, and validated their ability to bind RNA. Thus, proteomic identification of RNA-binding regions (RBR-ID) is a powerful tool to map protein-RNA interactions and will allow rational design of mutants to dissect their function at a mechanistic level.