RESUMEN
Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.
Asunto(s)
Perfilación de la Expresión Génica , Enfermedades Renales , Riñón , Análisis de la Célula Individual , Transcriptoma , Humanos , Núcleo Celular/genética , Riñón/citología , Riñón/lesiones , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Transcriptoma/genética , Estudios de Casos y Controles , Imagenología TridimensionalRESUMEN
HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.
Asunto(s)
Ésteres del Colesterol , Colesterol , Mitocondrias , Membranas Mitocondriales , Sulfotransferasas , Animales , Colesterol/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Mitocondrias/metabolismo , Ésteres del Colesterol/metabolismo , Membranas Mitocondriales/metabolismo , Ratones , Respiración de la Célula/fisiología , Respiración de la Célula/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Riñón/metabolismo , Ratones Endogámicos C57BLRESUMEN
The long-term effects of a single episode of acute kidney injury (AKI) induced by bilateral ischemia-reperfusion injury (BIRI) on kidney lymphatic dynamics are not known. The purpose of this study was to determine if alterations in kidney lymphatics are sustained in the long term and how they relate to inflammation and injury. Mice underwent BIRI as a model of AKI and were followed up to 9 mo. Although kidney function markers normalized following initial injury, histological analysis revealed sustained tissue damage and inflammation for up to 9 mo. Transcriptional analysis showed both acute and late-stage lymphangiogenesis, supported by increased expression of lymphatic markers, with unique signatures at each phase. Expression of Ccl21a was distinctly upregulated during late-stage lymphangiogenesis. Three-dimensional tissue cytometry confirmed increased lymphatic vessel abundance, particularly in the renal cortex, at early and late timepoints postinjury. In addition, the study identified the formation of tertiary lymphoid structures composed of CCR7+ lymphocytes and observed changes in immune cell composition over time, suggesting a complex and dynamic response to AKI involving tissue remodeling and immune cell involvement. This study provides new insights into the role of lymphatics in the progression of AKI to chronic kidney disease.NEW & NOTEWORTHY Here, we perform the first, comprehensive study of long-term lymphatic dynamics following a single acute kidney injury (AKI) event. Using improved three-dimensional image analysis and an expanded panel of transcriptional markers, we identify multiple stages of lymphatic responses with distinct transcriptional signatures, associations with the immune microenvironment, and collagen deposition. This research advances kidney lymphatic biology, emphasizing the significance of longitudinal studies in understanding AKI and the transition to chronic kidney disease.
Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Riñón , Linfangiogénesis , Vasos Linfáticos , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/fisiopatología , Vasos Linfáticos/patología , Vasos Linfáticos/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Riñón/patología , Riñón/metabolismo , Masculino , Quimiocina CCL21/metabolismo , Quimiocina CCL21/genética , Ratones , Factores de Tiempo , Estructuras Linfoides Terciarias/patología , Estructuras Linfoides Terciarias/metabolismoRESUMEN
Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.
Asunto(s)
Quimiocina CX3CL1 , Enfisema Pulmonar , Animales , Humanos , Ratones , alfa 1-Antitripsina/farmacología , Comunicación Celular , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Inflamación/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Monocitos , Enfisema Pulmonar/metabolismoRESUMEN
The human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney. Tissue cytometry is a novel approach used for the quantitative analysis of imaging data; however, the scale and complexity of such data sets pose unique challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and Analysis (VTEA) software, a unique tool that integrates image processing, segmentation, and interactive cytometry analysis into a single framework on desktop computers. Supported by an extensible and open-source framework, VTEA's integrated pipeline now includes enhanced analytical tools, such as machine learning, data visualization, and neighborhood analyses, for hyperdimensional large-scale imaging data sets. These novel capabilities enable the analysis of mesoscale 2- and 3-dimensional multiplexed human kidney imaging data sets (such as co-detection by indexing and 3-dimensional confocal multiplexed fluorescence imaging). We demonstrate the utility of this approach in identifying cell subtypes in the kidney on the basis of labels, spatial association, and their microenvironment or neighborhood membership. VTEA provides an integrated and intuitive approach to decipher the cellular and spatial complexity of the human kidney and complements other transcriptomics and epigenetic efforts to define the landscape of kidney cell types.
Asunto(s)
Imagenología Tridimensional , Riñón , Humanos , Riñón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Aprendizaje AutomáticoRESUMEN
Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led macrophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treatment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in ischemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.
Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Modelos Animales de Enfermedad , Riñón/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Uromodulina/genética , Uromodulina/metabolismoRESUMEN
Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.
Asunto(s)
Guías como Asunto , Riñón/patología , Medicina de Precisión , Biopsia , Humanos , Reproducibilidad de los ResultadosRESUMEN
Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.
Asunto(s)
Indoles/toxicidad , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Linfangiogénesis/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Naftalenos/toxicidad , Inhibidores de Proteínas Quinasas/toxicidad , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Cisplatino , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Riñón/enzimología , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Vasos Linfáticos/enzimología , Vasos Linfáticos/patología , Vasos Linfáticos/fisiopatología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosforilación , Transducción de Señal , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.
Asunto(s)
Lesión Renal Aguda , Citometría de Imagen , Imagenología Tridimensional , Vasos Linfáticos , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Linfangiogénesis , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Supresoras de Tumor/metabolismoRESUMEN
The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell's physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ.
Asunto(s)
Técnicas Citológicas , Imagenología Tridimensional , Riñón/citología , Microscopía de Fluorescencia por Excitación Multifotónica , Programas Informáticos , Colorantes Fluorescentes , Humanos , Microscopía ConfocalRESUMEN
To understand the physiology and pathology of disease, capturing the heterogeneity of cell types within their tissue environment is fundamental. In such an endeavor, the human kidney presents a formidable challenge because its complex organizational structure is tightly linked to key physiological functions. Advances in imaging-based cell classification may be limited by the need to incorporate specific markers that can link classification to function. Multiplex imaging can mitigate these limitations, but requires cumulative incorporation of markers, which may lead to tissue exhaustion. Furthermore, the application of such strategies in large scale 3-dimensional (3D) imaging is challenging. Here, we propose that 3D nuclear signatures from a DNA stain, DAPI, which could be incorporated in most experimental imaging, can be used for classifying cells in intact human kidney tissue. We developed an unsupervised approach that uses 3D tissue cytometry to generate a large training dataset of nuclei images (NephNuc), where each nucleus is associated with a cell type label. We then devised various supervised machine learning approaches for kidney cell classification and demonstrated that a deep learning approach outperforms classical machine learning or shape-based classifiers. Specifically, a custom 3D convolutional neural network (NephNet3D) trained on nuclei image volumes achieved a balanced accuracy of 80.26%. Importantly, integrating NephNet3D classification with tissue cytometry allowed in situ visualization of cell type classifications in kidney tissue. In conclusion, we present a tissue cytometry and deep learning approach for in situ classification of cell types in human kidney tissue using only a DNA stain. This methodology is generalizable to other tissues and has potential advantages on tissue economy and non-exhaustive classification of different cell types.
Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Humanos , Riñón , Coloración y Etiquetado , Aprendizaje Automático SupervisadoRESUMEN
BACKGROUND: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). METHODS: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. RESULTS: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. CONCLUSIONS: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Síndrome Nefrótico , Diabetes Mellitus/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Humanos , Glomérulos Renales/patología , Síndrome Nefrótico/patología , Proteinuria/patología , Esclerosis/patologíaRESUMEN
The early events that shape the innate immune response to restrain pathogens during skin infections remain elusive. Methicillin-resistant Staphylococcus aureus (MRSA) infection engages phagocyte chemotaxis, abscess formation, and microbial clearance. Upon infection, neutrophils and monocytes find a gradient of chemoattractants that influence both phagocyte direction and microbial clearance. The bioactive lipid leukotriene B4 (LTB4) is quickly (seconds to minutes) produced by 5-lipoxygenase (5-LO) and signals through the G protein-coupled receptors LTB4R1 (BLT1) or BLT2 in phagocytes and structural cells. Although it is known that LTB4 enhances antimicrobial effector functions in vitro, whether prompt LTB4 production is required for bacterial clearance and development of an inflammatory milieu necessary for abscess formation to restrain pathogen dissemination is unknown. We found that LTB4 is produced in areas near the abscess and BLT1 deficient mice are unable to form an abscess, elicit neutrophil chemotaxis, generation of neutrophil and monocyte chemokines, as well as reactive oxygen species-dependent bacterial clearance. We also found that an ointment containing LTB4 synergizes with antibiotics to eliminate MRSA potently. Here, we uncovered a heretofore unknown role of macrophage-derived LTB4 in orchestrating the chemoattractant gradient required for abscess formation, while amplifying antimicrobial effector functions.
Asunto(s)
Absceso/inmunología , Carga Bacteriana/inmunología , Leucotrieno B4/fisiología , Macrófagos/metabolismo , Staphylococcus aureus Resistente a Meticilina , Infecciones Cutáneas Estafilocócicas/inmunología , Absceso/genética , Absceso/microbiología , Absceso/patología , Animales , Araquidonato 5-Lipooxigenasa/genética , Carga Bacteriana/genética , Células Cultivadas , Femenino , Leucotrieno B4/metabolismo , Macrófagos/inmunología , Masculino , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Leucotrieno B4/genética , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/patologíaRESUMEN
Microvascular perfusion dynamics are vital to physiological function and are frequently dysregulated in injury and disease. Typically studies measure microvascular flow in a few selected vascular segments over limited time, failing to capture spatial and temporal variability. To quantify microvascular flow in a more complete and unbiased way we developed STAFF (Spatial Temporal Analysis of Fieldwise Flow), a macro for FIJI open-source image analysis software. Using high-speed microvascular flow movies, STAFF generates kymographs for every time interval for every vascular segment, calculates flow velocities from red blood cell shadow angles, and outputs the data as color-coded velocity map movies and spreadsheets. In untreated mice, analyses demonstrated profound variation even between adjacent sinusoids over seconds. In acetaminophen-treated mice we detected flow reduction localized to pericentral regions. STAFF is a powerful new tool capable of providing novel insights by enabling measurement of the complex spatiotemporal dynamics of microvascular flow.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hemodinámica , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Intravital/métodos , Circulación Hepática , Hígado/irrigación sanguínea , Microcirculación , Microvasos/fisiopatología , Imagen de Lapso de Tiempo/métodos , Acetaminofén , Animales , Automatización , Velocidad del Flujo Sanguíneo , Modelos Animales de Enfermedad , Eritrocitos , Quimografía , Masculino , Ratones Endogámicos C57BL , Flujo Sanguíneo Regional , Programas Informáticos , Análisis Espacio-Temporal , Factores de TiempoRESUMEN
Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI.
Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Fagocitos/efectos de los fármacos , Fagocitos/fisiología , Uromodulina/genética , Uromodulina/metabolismo , Lesión Renal Aguda/etiología , Animales , Plasticidad de la Célula/genética , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Humanos , Riñón/patología , Ratones , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/complicaciones , Uromodulina/química , Uromodulina/farmacología , Uromodulina/uso terapéuticoRESUMEN
Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.
Asunto(s)
Precondicionamiento Isquémico , Isocitrato Deshidrogenasa/genética , Riñón/irrigación sanguínea , Adenosina Trifosfato/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Creatinina/sangre , Vectores Genéticos/administración & dosificación , Inyecciones Intravenosas , Isocitrato Deshidrogenasa/fisiología , Túbulos Renales Proximales/citología , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Recurrencia , Transfección , Regulación hacia ArribaRESUMEN
Intravital microscopy (IVM) is an imaging tool that is capable of detecting subcellular signaling or metabolic events as they occur in tissues in the living animal. Imaging in highly scattering biological tissues, however, is challenging because of the attenuation of signal in images acquired at increasing depths. Depth-dependent signal attenuation is the major impediment to IVM, limiting the depth from which significant data can be obtained. Therefore, making quantitative measurements by IVM requires methods that use internal calibration, or alternatively, a completely different way of evaluating the signals. Here, we describe how ratiometric imaging of genetically encoded biosensor probes can be used to make quantitative measurements of changes in the activity of cell signaling pathways. Then, we describe how fluorescence lifetime imaging can be used for label-free measurements of the metabolic states of cells within the living animal.
Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Microscopía Intravital/métodos , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Células HEK293 , Humanos , Riñón/fisiología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiologíaRESUMEN
Two-photon intravital microscopy is a powerful tool that allows the examination of dynamic cellular processes in the live animal with unprecedented resolution. Indeed, it offers the ability to address unique biological questions that may not be solved by other means. While two-photon intravital microscopy has been successfully applied to study many organs, the kidney presents its own unique challenges that need to be overcome in order to optimize and validate imaging data. For kidney imaging, the complexity of renal architecture and salient autofluorescence merit special considerations as these elements directly impact image acquisition and data interpretation. Here, using illustrative cases, we provide practical guides and discuss issues that may arise during two-photon live imaging of the rodent kidney.
Asunto(s)
Colorantes Fluorescentes , Microscopía Intravital/métodos , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Riñón/citología , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.