Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Membr Biol ; 252(2-3): 173-182, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30863900

RESUMEN

Planar lipid bilayers constitute a versatile method for measuring the activity of protein channels and pores on a single molecule level. Ongoing efforts attempt to tailor this method for detecting biomedically relevant target analytes or for high-throughput screening of drugs. To improve the mechanical stability of bilayer recordings, we use a thin-film epoxy resist ADEX as septum in free-standing vertical bilayers. Defined apertures with diameters between 30 µm and 100 µm were micro-fabricated by photolithography. The performance of these septa was tested by functional reconstitution of the K+ channel KcvNTS in lipid bilayers spanned over apertures in ADEX or Teflon films; the latter is conventionally used in bilayer recordings and serves as reference. We observe that the functional properties of the K+ channel are identical in both materials while ADEX provides no advantage in terms of capacitance and signal-to-noise ratio. In contrast to Teflon, however, ADEX enables long-term experimental recordings while the stability of the lipid bilayer is not compromised by pipetting solutions in and out of the recording chamber. Combined with the fact that the ADEX films can be cleaned with acetone, our results suggest that ADEX carries great potential for multiplexing bilayer chambers in robust and reusable sensing devices.


Asunto(s)
Resinas Epoxi/química , Membrana Dobles de Lípidos/química , Microtecnología/métodos , Canales de Potasio/metabolismo , Imagen Individual de Molécula/métodos , Capacidad Eléctrica , Activación del Canal Iónico , Membrana Dobles de Lípidos/metabolismo , Procesos Fotoquímicos , Politetrafluoroetileno/química , Porosidad , Relación Señal-Ruido , Imagen Individual de Molécula/instrumentación
2.
J Am Chem Soc ; 139(22): 7494-7503, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28499087

RESUMEN

Gating of ion channels is based on structural transitions between open and closed states. To uncover the chemical basis of individual gates, we performed a comparative experimental and computational analysis between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with a monomer size of only 82 amino acids, resemble the pore module of all complex K+ channels in terms of structure and function. Even though both proteins share about 90% amino acid sequence identity, they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational studies and molecular dynamics simulations show that the difference in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel by a transient, Ser mediated, intrahelical hydrogen bond. The resulting kink in the inner transmembrane domain swings the aromatic rings from downstream Phes in the cavity of the channel, which blocks ion flux. The frequent occurrence of Ser or Thr based helical kinks in membrane proteins suggests that a similar mechanism could also occur in the gating of other ion channels.


Asunto(s)
Activación del Canal Iónico , Simulación de Dinámica Molecular , Canales de Potasio/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Modelos Moleculares , Alineación de Secuencia
3.
Front Physiol ; 12: 737834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777005

RESUMEN

Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA