Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34654743

RESUMEN

Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T1-weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood-brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.


Asunto(s)
Medios de Contraste/administración & dosificación , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Imagen por Resonancia Magnética/métodos , Animales , Barrera Hematoencefálica , Medios de Contraste/farmacocinética , Nanopartículas Magnéticas de Óxido de Hierro/química , Tamaño de la Partícula , Permeabilidad , Ratas
2.
Proc Natl Acad Sci U S A ; 114(9): 2325-2330, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193901

RESUMEN

Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.


Asunto(s)
Medios de Contraste/farmacocinética , Óxido Ferrosoférrico/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Albúminas/química , Albúminas/farmacocinética , Animales , Medios de Contraste/química , Óxido Ferrosoférrico/farmacocinética , Óxido Ferrosoférrico/orina , Gadolinio DTPA/química , Gadolinio DTPA/farmacocinética , Gadolinio DTPA/orina , Humanos , Imagen por Resonancia Magnética/instrumentación , Nanopartículas de Magnetita/administración & dosificación , Ratones , Ácido Oléico/química , Tamaño de la Partícula , Distribución Tisular
3.
Elife ; 102021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34931988

RESUMEN

Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology. Optimal FAP sensor variants were identified by screening a series of prototypes for responsiveness in a cell-based bioassay. The best variant was then applied for quantitative neuroimaging of FAP activity in rats, where it reveals nanomolar-scale FAP expression by xenografted cells. The activated probe also induces robust hemodynamic contrast in nonhuman primate brain. This work thus demonstrates a potentially translatable strategy for ultrasensitive functional imaging of molecular targets in neuromedicine.


Asunto(s)
Neoplasias Encefálicas/enzimología , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Imagen Molecular , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Saimiri
4.
Nat Commun ; 11(1): 2399, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404879

RESUMEN

The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.


Asunto(s)
Imagen Molecular/métodos , Sondas Moleculares/metabolismo , Péptidos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Vasodilatadores/metabolismo , Animales , Biotina/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Dopamina/metabolismo , Células HEK293 , Humanos , Imagen por Resonancia Magnética/métodos , Sondas Moleculares/química , Neurotransmisores/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Ratas , Reproducibilidad de los Resultados , Vasodilatadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA