Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 597(7874): 87-91, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433966

RESUMEN

Studies based on single cells have revealed vast cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degrees of plasticity during organogenesis1-5. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including the liver, pancreas, gall bladder and extra-hepatic bile ducts6,7. Experimental manipulation of various developmental signals in the mouse embryo has underscored important cellular plasticity in this embryonic territory6. This is reflected in the existence of human genetic syndromes as well as congenital malformations featuring multi-organ phenotypes in liver, pancreas and gall bladder6. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary and pancreatic structures have not yet been established. Here we combine computational modelling approaches with genetic lineage tracing to accurately reconstruct the hepato-pancreato-biliary lineage tree. We show that a multipotent progenitor subpopulation persists in the pancreato-biliary organ rudiment, contributing cells not only to the pancreas and gall bladder but also to the liver. Moreover, using single-cell RNA sequencing and functional experiments we define a specialized niche that supports this subpopulation in a multipotent state for an extended time during development. Together these findings indicate sustained plasticity underlying hepato-pancreato-biliary development that might also explain the rapid expansion of the liver while attenuating pancreato-biliary growth.


Asunto(s)
Sistema Biliar/citología , Linaje de la Célula , Hígado/citología , Páncreas/citología , Nicho de Células Madre , Animales , Sistema Biliar/embriología , Sistema Biliar/metabolismo , Linaje de la Célula/genética , Rastreo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Páncreas/embriología , Páncreas/metabolismo , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual , Nicho de Células Madre/genética
2.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30862660

RESUMEN

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteína MioD/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción HES-1/metabolismo , Animales , Células Cultivadas , Ratones , Proteína MioD/genética , Receptores Notch/metabolismo , Transducción de Señal , Factor de Transcripción HES-1/genética
3.
Bioinformatics ; 39(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950510

RESUMEN

SUMMARY: Relation extraction (RE) from large text collections is an important tool for database curation, pathway reconstruction, or functional omics data analysis. In practice, RE often is part of a complex data analysis pipeline requiring specific adaptations like restricting the types of relations or the set of proteins to be considered. However, current systems are either non-programmable web sites or research code with fixed functionality. We present PEDL+, a user-friendly tool for extracting protein-protein and protein-chemical associations from PubMed articles. PEDL+ combines state-of-the-art NLP technology with adaptable ranking and filtering options and can easily be integrated into analysis pipelines. We evaluated PEDL+ in two pathway curation projects and found that 59% to 80% of its extractions were helpful. AVAILABILITY AND IMPLEMENTATION: PEDL+ is freely available at https://github.com/leonweber/pedl.


Asunto(s)
Programas Informáticos , PubMed , Bases de Datos Factuales
4.
Exp Cell Res ; 409(2): 112933, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793773

RESUMEN

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. Muscle stem cells can proliferate, they can generate differentiating cells, or they self-renew to produce new stem cells. Notch signaling plays a crucial role in this process. Recent studies revealed that expression of the Notch effector HES1 oscillates in activated muscle stem cells. The oscillatory expression of HES1 periodically represses transcription from the genes encoding the myogenic transcription factor MYOD and the Notch ligand DLL1, thereby driving MYOD and DLL1 oscillations. This oscillatory network allows muscle progenitor cells and activated muscle stem cells to remain in a proliferative and 'undecided' state, in which they can either differentiate or self-renew. When HES1 is downregulated, MYOD oscillations become unstable and are replaced by sustained expression, which drives the cells into terminal differentiation. During development and regeneration, proliferating stem cells contact each other and the stability of the oscillatory expression depends on regular DLL1 inputs provided by neighboring cells. In such communities of cells that receive and provide Notch signals, the appropriate timing of DLL1 inputs is important, as sustained DLL1 cannot replace oscillatory DLL1. Thus, in cell communities, DLL1 oscillations ensure the appropriate balance between self-renewal and differentiation. In summary, oscillations in myogenic cells are an important example of dynamic gene expression determining cell fate.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Periodicidad , Receptores Notch/metabolismo , Células Madre/citología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Receptores Notch/genética , Células Madre/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
5.
Immun Ageing ; 19(1): 40, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042501

RESUMEN

BACKGROUND: Aging is accompanied by a dramatic decline in the interleukin (IL)-2 production capacity of human immune cells, thus making seniors more susceptible to a variety of age-related diseases. A common cause of impaired cytokine production in advanced age is a deficiency of the essential micronutrient zinc. Nevertheless, the molecular mechanisms underlying a zinc deficiency-induced decrease in IL-2 production have not yet been satisfactorily elucidated. Recent animal and in vitro data suggested that the transcription factor cAMP-responsive element modulator (CREM) [Formula: see text] plays a critical role in T cells´ disturbed IL-2 production in suboptimal zinc conditions. However, its role in the human aging process and the possibility of influencing this detrimental process by short-term zinc supplementation have not yet been evaluated. RESULTS: Comparing peripheral lymphocytes of 23 young and 31 elderly subjects with either high, intermediate, or deficient zinc status, we observed zinc-dependent regulation of the IL-2 production mediated by the transcription factor CREM [Formula: see text]. For the first time in humans, we report a mutual relationship between low zinc levels, high CREM [Formula: see text] expression, subsequent impaired IL-2 production, and vice versa. Remarkably, an average of only 6 days of in vivo zinc supplementation to zinc-deficient seniors was sufficient to rapidly improve zinc status, reverse CREM [Formula: see text] overexpression, and counteract subsequent low IL-2 production rates. CONCLUSIONS: Our ex vivo and in vivo data identify zinc deficiency-mediated CREM [Formula: see text] overexpression as a key cellular mechanism underlying impaired IL-2 production in the elderly and point toward the use of zinc as a rapidly immune-enhancing add-on nutraceutical in geriatric therapy. During the aging process, there is a progressive decrease in zinc status, which in turn leads to overexpression of the transcription factor CREM[Formula: see text] in peripheral lymphocytes. CREMα is a negative regulator of the IL-2 gene, the overexpression of which dramatically limits adequate IL-2 production. This deleterious mechanism can be counteracted by short-term oral zinc administration, which can adjust IL-2 production in old, zinc-deficient individuals to a level similar to that of young adults.

6.
Int J Cancer ; 148(5): 1219-1232, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284994

RESUMEN

Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing 13 C-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma.


Asunto(s)
Amplificación de Genes , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Glicina/metabolismo , Humanos , Ratones , Neuroblastoma/genética , Serina/metabolismo
7.
Bioinformatics ; 36(Suppl_1): i490-i498, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657389

RESUMEN

MOTIVATION: A significant portion of molecular biology investigates signalling pathways and thus depends on an up-to-date and complete resource of functional protein-protein associations (PPAs) that constitute such pathways. Despite extensive curation efforts, major pathway databases are still notoriously incomplete. Relation extraction can help to gather such pathway information from biomedical publications. Current methods for extracting PPAs typically rely exclusively on rare manually labelled data which severely limits their performance. RESULTS: We propose PPA Extraction with Deep Language (PEDL), a method for predicting PPAs from text that combines deep language models and distant supervision. Due to the reliance on distant supervision, PEDL has access to an order of magnitude more training data than methods solely relying on manually labelled annotations. We introduce three different datasets for PPA prediction and evaluate PEDL for the two subtasks of predicting PPAs between two proteins, as well as identifying the text spans stating the PPA. We compared PEDL with a recently published state-of-the-art model and found that on average PEDL performs better in both tasks on all three datasets. An expert evaluation demonstrates that PEDL can be used to predict PPAs that are missing from major pathway databases and that it correctly identifies the text spans supporting the PPA. AVAILABILITY AND IMPLEMENTATION: PEDL is freely available at https://github.com/leonweber/pedl. The repository also includes scripts to generate the used datasets and to reproduce the experiments from this article. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lenguaje , Proteínas , Publicaciones , Proyectos de Investigación
8.
PLoS Comput Biol ; 16(6): e1007901, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32589666

RESUMEN

The transcription factors NF-κB and p53 are key regulators in the genotoxic stress response and are critical for tumor development. Although there is ample evidence for interactions between both networks, a comprehensive understanding of the crosstalk is lacking. Here, we developed a systematic approach to identify potential interactions between the pathways. We perturbed NF-κB signaling by inhibiting IKK2, a critical regulator of NF-κB activity, and monitored the altered response of p53 to genotoxic stress using single cell time lapse microscopy. Fitting subpopulation-specific computational p53 models to this time-resolved single cell data allowed to reproduce in a quantitative manner signaling dynamics and cellular heterogeneity for the unperturbed and perturbed conditions. The approach enabled us to untangle the integrated effects of IKK/ NF-κB perturbation on p53 dynamics and thereby derive potential interactions between both networks. Intriguingly, we find that a simultaneous perturbation of multiple processes is necessary to explain the observed changes in the p53 response. Specifically, we show interference with the activation and degradation of p53 as well as the degradation of Mdm2. Our results highlight the importance of the crosstalk and its potential implications in p53-dependent cellular functions.


Asunto(s)
Análisis de la Célula Individual , Proteína p53 Supresora de Tumor/fisiología , Microscopía/métodos , FN-kappa B/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
9.
J Pathol ; 251(2): 160-174, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222043

RESUMEN

The IκB kinase (IKK)-NF-κB signaling pathway plays a multifaceted role in inflammatory bowel disease (IBD): on the one hand, it protects from apoptosis; on the other, it activates transcription of numerous inflammatory cytokines and chemokines. Although several murine models of IBD rely on disruption of IKK-NF-κB signaling, these involve either knockouts of a single family member of NF-κB or of upstream kinases that are known to have additional, NF-κB-independent, functions. This has made the distinct contribution of NF-κB to homeostasis in intestinal epithelium cells difficult to assess. To examine the role of constitutive NF-κB activation in intestinal epithelial cells, we generated a mouse model with a tissue-specific knockout of the direct inhibitor of NF-κB, Nfkbia/IκBα. We demonstrate that constitutive activation of NF-κB in intestinal epithelial cells induces several hallmarks of IBD including increased apoptosis, mucosal inflammation in both the small intestine and the colon, crypt hyperplasia, and depletion of Paneth cells, concomitant with aberrant Wnt signaling. To determine which NF-κB-driven phenotypes are cell-intrinsic, and which are extrinsic and thus require the immune compartment, we established a long-term organoid culture. Constitutive NF-κB promoted stem-cell proliferation, mis-localization of Paneth cells, and sensitization of intestinal epithelial cells to apoptosis in a cell-intrinsic manner. Increased number of stem cells was accompanied by a net increase in Wnt activity in organoids. Because aberrant Wnt signaling is associated with increased risk of cancer in IBD patients and because NFKBIA has recently emerged as a risk locus for IBD, our findings have critical implications for the clinic. In a context of constitutive NF-κB, our findings imply that general anti-inflammatory or immunosuppressive therapies should be supplemented with direct targeting of NF-κB within the epithelial compartment in order to attenuate apoptosis, inflammation, and hyperproliferation. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Apoptosis , Enfermedades Inflamatorias del Intestino/metabolismo , Intestino Delgado/metabolismo , Inhibidor NF-kappaB alfa/deficiencia , Células de Paneth/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Intestino Delgado/patología , Ratones Noqueados , Inhibidor NF-kappaB alfa/genética , Organoides/metabolismo , Organoides/patología , Células de Paneth/patología , Células Madre/patología , Factor de Transcripción ReIA/metabolismo , Vía de Señalización Wnt
10.
EMBO J ; 33(14): 1514-26, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24872509

RESUMEN

The conserved eukaryotic Pan2-Pan3 deadenylation complex shortens cytoplasmic mRNA 3' polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2-Pan3 complex.


Asunto(s)
Chaetomium/química , Exorribonucleasas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Cromatografía de Afinidad , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Exorribonucleasas/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Sefarosa , Análisis de Secuencia de ADN
11.
PLoS Comput Biol ; 12(12): e1005298, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28027301

RESUMEN

Oscillations occur in a wide variety of cellular processes, for example in calcium and p53 signaling responses, in metabolic pathways or within gene-regulatory networks, e.g. the circadian system. Since it is of central importance to understand the influence of perturbations on the dynamics of these systems a number of experimental and theoretical studies have examined their robustness. The period of circadian oscillations has been found to be very robust and to provide reliable timing. For intracellular calcium oscillations the period has been shown to be very sensitive and to allow for frequency-encoded signaling. We here apply a comprehensive computational approach to study the robustness of period and amplitude of oscillatory systems. We employ different prototype oscillator models and a large number of parameter sets obtained by random sampling. This framework is used to examine the effect of three design principles on the sensitivities towards perturbations of the kinetic parameters. We find that a prototype oscillator with negative feedback has lower period sensitivities than a prototype oscillator relying on positive feedback, but on average higher amplitude sensitivities. For both oscillator types, the use of Michaelis-Menten instead of mass action kinetics in all degradation and conversion reactions leads to an increase in period as well as amplitude sensitivities. We observe moderate changes in sensitivities if replacing mass conversion reactions by purely regulatory reactions. These insights are validated for a set of established models of various cellular rhythms. Overall, our work highlights the importance of reaction kinetics and feedback type for the variability of period and amplitude and therefore for the establishment of predictive models.


Asunto(s)
Relojes Biológicos/fisiología , Señalización del Calcio/fisiología , Fenómenos Fisiológicos Celulares , Ritmo Circadiano/fisiología , Modelos Biológicos , Oscilometría/métodos , Animales , Simulación por Computador , Humanos , Cinética
12.
Nature ; 473(7347): 337-42, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21593866

RESUMEN

Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Proteínas/análisis , ARN Mensajero/análisis , Animales , Semivida , Mamíferos/genética , Ratones , Modelos Genéticos , Células 3T3 NIH , Biosíntesis de Proteínas/genética , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Coloración y Etiquetado
13.
Bioessays ; 37(4): 452-62, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25640005

RESUMEN

The transcription factor NF-κB (p65/p50) plays a central role in the coordination of cellular responses by activating the transcription of numerous target genes. The precise role of the dynamics of NF-κB signalling in regulating gene expression is still an open question. Here, we show that besides external stimulation intracellular parameters can influence the dynamics of NF-κB. By applying mathematical modelling and bifurcation analyses, we show that NF-κB is capable of exhibiting different types of dynamics in response to the same stimulus. We identified the total NF-κB concentration and the IκBα transcription rate constant as two critical parameters that modulate the dynamics and the fold change of NF-κB. Both parameters might vary as a result of cell-to-cell variability. The regulation of the IκBα transcription rate constant, e.g. by co-factors, provides the possibility of regulating the NF-κB dynamics by crosstalk.


Asunto(s)
Modelos Teóricos , Supervivencia Celular/fisiología , Proteínas I-kappa B/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Transducción de Señal
14.
EMBO J ; 31(1): 187-200, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21989385

RESUMEN

The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-ß (Aß) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aß production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células CHO , Cricetinae , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Modelos Biológicos
15.
J Am Chem Soc ; 137(20): 6468-71, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25963544

RESUMEN

Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Células K562 , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Factores de Tiempo
16.
Bioessays ; 35(7): 597-601, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23696377

RESUMEN

It is of fundamental importance to understand how the individual processes of gene expression, transcription, and translation, as well as mRNA and protein stability, act in concert to produce dynamic cellular proteomes. We use the concept of response times to illustrate the relation between degradation processes and responsiveness of the proteome to system changes and to provide supporting experimental evidence: proteins with short response times tend to be more strongly up-regulated after 1 hour of TNFα stimulation than proteins with longer response times. Furthermore, based on process-dependent response times, we demonstrate that synthesis and degradation act in concert to enable rapid responses. Finally, by building on a previously published data set quantifying the mammalian gene expression cascade, we speculate on how combinations of stable and unstable mRNAs and proteins may be wired to transcriptional or translational regulation to support gene function.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Animales , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Ratones , Células 3T3 NIH , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Activación Transcripcional/genética , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba
17.
Biochem Soc Trans ; 42(1): 184-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24450649

RESUMEN

Poly(A) tails are important regulators of mRNA stability and translational efficiency. Cytoplasmic removal of poly(A) tails by 3'→5' exonucleases (deadenylation) is the rate-limiting step in mRNA degradation. Two exonuclease complexes contribute the majority of the deadenylation activity in eukaryotes: Ccr4-Not and Pan2-Pan3. These can be specifically recruited to mRNA to regulate mRNA stability or translational efficiency, thereby fine-tuning gene expression. In the present review, we discuss the activities and roles of the Pan2-Pan3 deadenylation complex.


Asunto(s)
Proteínas Portadoras/fisiología , Exorribonucleasas/fisiología , ARN Mensajero/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Poliadenilación , Estabilidad del ARN , ARN Mensajero/genética
19.
Antiviral Res ; : 105953, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960100

RESUMEN

Temsavir binds directly to the HIV-1 envelope glycoprotein gp120 and selectively inhibits interactions between HIV-1 and CD4 receptors. Previous studies identified gp120 amino acid positions where substitutions are associated with reduced susceptibility to temsavir. The mechanism by which temsavir susceptibility is altered in these envelope glycoproteins was evaluated. Pseudoviruses encoding gp120 substitutions alone (S375H/I/M/N, M426L, M434I, M475I) or in combination (S375H + M475I) were engineered on a wild-type JRFL background. Temsavir-gp120 and CD4-gp120 binding kinetics and ability of temsavir to block CD4-gp120 binding were evaluated using the purified polymorphic gp120 proteins and a Creoptix® WAVE Delta grating-coupled interferometry system. The fold-change in half-maximal inhibitory concentration (IC50) in JRFL-based pseudoviruses containing the aforementioned polymorphisms relative to that of wild-type ranged from 4-fold to 29,726-fold, while temsavir binding affinity for the polymorphic gp120 proteins varied from 0.7-fold to 73.7-fold relative to wild-type gp120. Strong correlations between temsavir IC50 and temsavir binding affinity (r=0.7332; P=0.0246) as well as temsavir binding on-rate (r=-0.8940; P=0.0011) were observed. Binding affinity of gp120 proteins for CD4 varied between 0.4-fold and 3.1-fold compared with wild-type gp120; no correlations between temsavir IC50 and CD4 binding kinetic parameters were observed. For all polymorphic gp120 proteins, temsavir was able to fully block CD4 binding; 3 polymorphs required higher temsavir concentrations. Loss of susceptibility to temsavir observed for gp120 polymorphisms strongly correlated with reductions in temsavir binding on-rate. Nonetheless, temsavir retained the ability to fully block CD4-gp120 engagement given sufficiently high concentrations.

20.
Methods Mol Biol ; 2634: 267-284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074583

RESUMEN

Crosstalk between signaling pathways can modulate the cellular response to stimuli and is therefore an important part of signal transduction. For a comprehensive understanding of cellular responses, identifying points of interaction between the underlying molecular networks is essential. Here, we present an approach that allows the systematic prediction of such interactions by perturbing one pathway and quantifying the concomitant alterations in the response of a second pathway. As the observed alterations contain information about the crosstalk, we use an ordinary differential equation-based model to extract this information by linking altered dynamics to individual processes. Consequently, we can predict the interaction points between two pathways. As an example, we employed our approach to investigate the crosstalk between the NF-κB and p53 signaling pathway. We monitored the response of p53 to genotoxic stress using time-resolved single cell data and perturbed NF-κB signaling by inhibiting the kinase IKK2. Employing a subpopulation-based modeling approach enabled us to identify multiple interaction points that are simultaneously affected by perturbation of NF-κB signaling. Hence, our approach can be used to analyze crosstalk between two signaling pathways in a systematic manner.


Asunto(s)
FN-kappa B , Proteína p53 Supresora de Tumor , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal , Modelos Biológicos , Daño del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA