Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Rev Mol Cell Biol ; 15(12): 825-33, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25355507

RESUMEN

Although the shapes of organisms are encoded in their genome, the developmental processes that lead to the final form of vertebrates involve a constant feedback between dynamic mechanical forces, and cell growth and motility. Mechanobiology has emerged as a discipline dedicated to the study of the effects of mechanical forces and geometry on cell growth and motility­for example, during cell-matrix adhesion development­through the signalling process of mechanotransduction.


Asunto(s)
Biología Celular/historia , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Matriz Extracelular/fisiología , Historia del Siglo XX , Historia del Siglo XXI
2.
Biophys J ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39233443

RESUMEN

Mechanical and biochemical cues intricately activate YAP, which is pivotal for the cellular responses to these stimuli. Recent findings reveal an unexplored role of YAP in influencing the apoptotic process. It has been shown that on soft matrices YAP is recruited to small adhesions, phosphorylated at Y357, and translocated into the nucleus triggering apoptosis. Interestingly, YAP Y357 phosphorylation is significantly reduced in larger mature focal adhesions on stiff matrices. Building upon these novel insights, we have developed a stochastic model to delve deeper into the complex dynamics of YAP phosphorylation within integrin adhesions. Our findings emphasize several key points: firstly, increasing the cytosolic diffusion rate of YAP correlates with higher levels of phosphorylated YAP (pYAP), secondly, increasing the number of binding sites and distributing them across the membrane surface, mimicking smaller adhesions, leads to higher pYAP levels, particularly at lower diffusion rates. Moreover, we show that the binding and release rate of YAP to adhesions as well as adhesion lifetimes significantly influence the size-effect of adhesion-induced YAP phosphorylation. The results highlight the complex and dynamic interplay between adhesion lifetime, the rate of pYAP unbinding from adhesions, and dephosphorylation rates, collectively shaping overall pYAP levels. In summary, our work advances the understanding of YAP mechanotransduction and opens avenues for experimental validation.

3.
PLoS Comput Biol ; 19(10): e1011500, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801464

RESUMEN

Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.


Asunto(s)
Actinas , Adhesiones Focales , Adhesiones Focales/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Integrinas/metabolismo , Matriz Extracelular/metabolismo , Adhesión Celular/fisiología , Talina
4.
Annu Rev Physiol ; 81: 585-605, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30403543

RESUMEN

It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.


Asunto(s)
Movimiento Celular , Mecanotransducción Celular , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Humanos , Integrinas/metabolismo , Integrinas/fisiología , Masculino
5.
Nat Mater ; 19(2): 239-250, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659296

RESUMEN

A common feature of cancer cells is the alteration of kinases and biochemical signalling pathways enabling transformed growth on soft matrices, whereas cytoskeletal protein alterations are thought to be a secondary issue. However, we report here that cancer cells from different tissues can be toggled between transformed and rigidity-dependent growth states by the absence or presence of mechanosensory modules, respectively. In various cancer lines from different tissues, cells had over tenfold fewer rigidity-sensing contractions compared with normal cells from the same tissues. Restoring normal levels of cytoskeletal proteins, including tropomyosins, restored rigidity sensing and rigidity-dependent growth. Further depletion of other rigidity sensor proteins, including myosin IIA, restored transformed growth and blocked sensing. In addition, restoration of rigidity sensing to cancer cells inhibited tumour formation and changed expression patterns. Thus, the depletion of rigidity-sensing modules through alterations in cytoskeletal protein levels enables cancer cell growth on soft surfaces, which is an enabling factor for cancer progression.


Asunto(s)
Transformación Celular Neoplásica , Fenómenos Mecánicos , Fenómenos Biomecánicos , Línea Celular Tumoral , Proliferación Celular , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/citología , Fibroblastos/patología , Humanos , Tropomiosina/metabolismo
6.
Nat Mater ; 16(7): 775-781, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28459445

RESUMEN

Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.


Asunto(s)
Movimiento Celular , Receptores ErbB/metabolismo , Fibroblastos/enzimología , Mecanotransducción Celular , Receptor ErbB-2/metabolismo , Animales , Fibroblastos/citología , Ratones , Familia-src Quinasas/metabolismo
7.
Nano Lett ; 17(12): 7242-7251, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29052994

RESUMEN

Cell growth depends upon formation of cell-matrix adhesions, but mechanisms detailing the transmission of signals from adhesions to control proliferation are still lacking. Here, we find that the scaffold protein talin undergoes force-induced cleavage in early adhesions to produce the talin rod fragment that is needed for cell cycle progression. Expression of noncleavable talin blocks cell growth, adhesion maturation, proper mechanosensing, and the related property of EGF activation of motility. Further, the expression of talin rod in the presence of noncleavable full-length talin rescues cell growth and other functions. The cleavage of talin is found in early adhesions where there is also rapid turnover of talin that depends upon calpain and TRPM4 activity as well as the generation of force on talin. Thus, we suggest that an important function of talin is its control over cell cycle progression through its cleavage in early adhesions.


Asunto(s)
Calpaína/metabolismo , Proliferación Celular/fisiología , Adhesiones Focales/fisiología , Animales , Línea Celular , Movimiento Celular , Ratones , Proteolisis , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Talina/genética
8.
Nano Lett ; 16(9): 5951-61, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27559755

RESUMEN

To understand how cells form tissues, we need to understand how the tyrosine kinases are involved in controlling cell mechanics, whether they act directly as parts of mechanosensing machines or indirectly. Cells test the critical parameter of matrix rigidity by locally contracting ("pinching") matrices and measuring forces, and the depletion of contractile units causes transformation. We report here that knocking down the receptor tyrosine kinases (RTKs), AXL, and ROR2, alters rigidity sensing and increases the magnitude or duration of local contraction events, respectively. Phospho-AXL and ROR2 localize to contraction units and bind major contractile components, tropomyosin 2.1 (AXL), myosin IIA (AXL), and filamin A (ROR2). At a molecular level, phosphorylated AXL localizes to active myosin filaments and phosphorylates tropomyosin at a tyrosine critical for adhesion formation. ROR2 binding of ligand is unnecessary, but binding filamin A helps function. Thus, AXL and ROR2 alter rigidity sensing and consequently morphogenic processes by directly controlling local mechanosensory contractions without ligands.


Asunto(s)
Fibroblastos/citología , Mecanotransducción Celular , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/fisiología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Tirosina Quinasa del Receptor Axl
9.
Biophys J ; 107(11): 2508-14, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25468330

RESUMEN

In this review, we focus on the early events in the process of fibroblast spreading on fibronectin matrices of different rigidities. We present a focused position piece that illustrates the many different tests that a cell makes of its environment before it establishes mature matrix adhesions. When a fibroblast is placed on fibronectin-coated glass surfaces at 37°C, it typically spreads and polarizes within 20-40 min primarily through αvß3 integrin binding to fibronectin. In that short period, the cell goes through three major phases that involve binding, integrin activation, spreading, and mechanical testing of the surface. The advantage of using the model system of cell spreading from the unattached state is that it is highly reproducible and the stages that the cell undergoes can thus be studied in a highly quantitative manner, in both space and time. The mechanical and biochemical parameters that matter in this example are often surprising because of both the large number of tests that occur and the precision of the tests. We discuss our current understanding of those tests, the decision tree that is involved in this process, and an extension to the behavior of the cells at longer time periods when mature adhesions develop. Because many other matrices and integrins are involved in cell-matrix adhesion, this model system gives us a limited view of a subset of cellular behaviors that can occur. However, by defining one cellular process at a molecular level, we know more of what to expect when defining other processes. Because each cellular process will involve some different proteins, a molecular understanding of multiple functions operating within a given cell can lead to strategies to selectively block a function.


Asunto(s)
Movimiento Celular , Modelos Biológicos , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Humanos , Integrinas/metabolismo
10.
Cell Rep ; 43(3): 113811, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393944

RESUMEN

Extracellular matrix (ECM) rigidity is a major effector of cell fate decisions. Whereas cell proliferation on stiff matrices, wherein Yes-associated protein (YAP) plays a pivotal role, is well documented, activation of apoptosis in response to soft matrices is poorly understood. Here, we show that YAP drives the apoptotic decision as well. We find that in cells on soft matrices, YAP is recruited to small adhesions, phosphorylated at the Y357 residue, and translocated into the nucleus, ultimately leading to apoptosis. In contrast, Y357 phosphorylation levels are dramatically low in large adhesions on stiff matrices. Furthermore, mild attenuation of actomyosin contractility allows adhesion growth on soft matrices, leading to reduced Y357 phosphorylation levels and resulting in cell growth. These findings indicate that failed adhesion reinforcement drives rigidity-dependent apoptosis through YAP and that this decision is not determined solely by ECM rigidity but rather by the balance between cellular forces and ECM rigidity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Integrinas , Integrinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Fosforilación , Matriz Extracelular/metabolismo , Apoptosis
11.
Traffic ; 12(11): 1648-57, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21810156

RESUMEN

Non-integral membrane proteins frequently act as transduction hubs in vital signaling pathways initiated at the plasma membrane (PM). Their biological activity depends on dynamic interactions with the PM, which are governed by their lateral and cytoplasmic diffusion and membrane binding/unbinding kinetics. Accurate quantification of the multiple kinetic parameters characterizing their membrane interaction dynamics has been challenging. Despite a fair number of approximate fitting functions for analyzing fluorescence recovery after photobleaching (FRAP) data, no approach was able to cope with the full diffusion-exchange problem. Here, we present an exact solution and matlab fitting programs for FRAP with a stationary Gaussian laser beam, allowing simultaneous determination of the membrane (un)binding rates and the diffusion coefficients. To reduce the number of fitting parameters, the cytoplasmic diffusion coefficient is determined separately. Notably, our equations include the dependence of the exchange kinetics on the distribution of the measured protein between the PM and the cytoplasm, enabling the derivation of both k(on) and k(off) without prior assumptions. After validating the fitting function by computer simulations, we confirm the applicability of our approach to live-cell data by monitoring the dynamics of GFP-N-Ras mutants under conditions with different contributions of lateral diffusion and exchange to the FRAP kinetics.


Asunto(s)
Membrana Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas de la Membrana/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Simulación por Computador , Citoplasma/metabolismo , Difusión , Genes ras , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Unión Proteica , Transporte de Proteínas , Transducción de Señal
12.
J Cell Sci ; 124(Pt 9): 1425-32, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21486952

RESUMEN

Focal adhesions (FAs) have key roles in the interaction of cells with the extracellular matrix (ECM) and in adhesion-mediated signaling. These dynamic, multi-protein structures sense the ECM both chemically and physically, and respond to external and internal forces by changing their size and signaling activity. However, this mechanosensitivity is still poorly understood at the molecular level. Here, we present direct evidence that actomyosin contractility regulates the molecular kinetics of FAs. We show that the molecular turnover of proteins within FAs is primarily regulated by their dissociation rate constant (k(off)), which is sensitive to changes in forces applied to the FA. We measured the early changes in k(off) values for three FA proteins (vinculin, paxillin and zyxin) upon inhibition of actomyosin-generated forces using two methods - high temporal resolution FRAP and direct measurement of FA protein dissociation in permeabilized cells. When myosin II contractility was inhibited, the k(off) values for all three proteins changed rapidly, in a highly protein-specific manner: dissociation of vinculin from FAs was facilitated, whereas dissociation of paxillin and zyxin was attenuated. We hypothesize that these early kinetic changes initiate FA disassembly by affecting the molecular turnover of FAs and altering their composition.


Asunto(s)
Actomiosina/metabolismo , Adhesiones Focales/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Adhesiones Focales/efectos de los fármacos , Glicoproteínas/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Toxinas Marinas , Oxazoles/farmacología , Paxillin/metabolismo , Vinculina/metabolismo , Zixina
13.
Methods Mol Biol ; 2600: 197-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587099

RESUMEN

Accurately evaluating cellular forces is critical for studying mechanosensing and mechanotransduction processes, and it necessitates sensitive measurements on the piconewton scale. Here we describe a specialized method that employs elastic polydimethylsiloxane (PDMS) micropillar arrays, which cells can adhere to and bend. The flexibility of the pillars correlates with their heights; the longer they are, the easier they are to bend. Thus, an array of taller pillars mimics a relatively soft substrate that readily yields in response to cellular forces. Tracking cell movements and pillar displacements using live-cell microscopy enables the calculation of cellular forces and the tracking of their dynamic features throughout early and late stages of cell spreading on the pillars. This technique offers the advantage of high spatial and temporal resolution analyses and constitutes a method to investigate the effect of substrate rigidities on cellular functions.


Asunto(s)
Mecanotransducción Celular , Tracción , Movimiento Celular/fisiología
14.
Biophys Rep (N Y) ; 3(1): 100099, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36698752

RESUMEN

Cell-matrix and cell-cell adhesion play important roles in a wide variety of physiological processes, from the single-cell level to the large scale, multicellular organization of tissues. Cells actively apply forces to their environment, either extracellular matrix or neighboring cells, as well as sense its biophysical properties. The fluctuations associated with these active processes occur on an energy scale much larger than that of ordinary thermal equilibrium fluctuations, yet their statistical properties and characteristic scales are not fully understood. Here, we compare measurements of the energy scale of active cellular fluctuations-an effective cellular temperature-in four different biophysical settings, involving both single-cell and cell-aggregate experiments under various control conditions, different cell types, and various biophysical observables. The results indicate that a similar energy scale of active fluctuations might characterize the same cell type in different settings, though it may vary among different cell types, being approximately six to eight orders of magnitude larger than the ordinary thermal energy at room temperature. These findings call for extracting the energy scale of active fluctuations over a broader range of cell types, experimental settings, and biophysical observables and for understanding the biophysical origin and significance of such cellular energy scales.

15.
Front Cell Dev Biol ; 11: 1013721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743412

RESUMEN

Primary fibroblasts from patient's skin biopsies are directly isolated without any alteration in the genome, retaining in culture conditions their endogenous cellular characteristics and biochemical properties. The aim of this study was to identify a distinctive cell phenotype for potential drug evaluation in fibroblasts from Huntington's Disease (HD) patients, using image-based high content analysis. We show that HD fibroblasts have a distinctive nuclear morphology associated with a nuclear actin cap deficiency. This in turn affects cell motility in a similar manner to fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients used as known actin cap deficient cells. Moreover, treatment of the HD cells with either Latrunculin B, used to disrupt actin cap formation, or the antioxidant agent Mitoquinone, used to improve mitochondrial activity, show expected opposite effects on actin cap associated morphological features and cell motility. Deep data analysis allows strong cluster classification within HD cells according to patients' disease severity score which is distinct from HGPS and matching controls supporting that actin cap is a biomarker in HD patients' cells correlated with HD severity status that could be modulated by pharmacological agents as tool for personalized drug evaluation.

16.
Cell Rep ; 42(5): 112473, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37148241

RESUMEN

Fibronectin fibrillogenesis and mechanosensing both depend on integrin-mediated force transmission to the extracellular matrix. However, force transmission is in itself dependent on fibrillogenesis, and fibronectin fibrils are found in soft embryos where high forces cannot be applied, suggesting that force cannot be the sole initiator of fibrillogenesis. Here, we identify a nucleation step prior to force transmission, driven by fibronectin oxidation mediated by lysyl oxidase enzyme family members. This oxidation induces fibronectin clustering, which promotes early adhesion, alters cellular response to soft matrices, and enhances force transmission to the matrix. In contrast, absence of fibronectin oxidation abrogates fibrillogenesis, perturbs cell-matrix adhesion, and compromises mechanosensation. Moreover, fibronectin oxidation promotes cancer cell colony formation in soft agar as well as collective and single-cell migration. These results reveal a force-independent enzyme-dependent mechanism that initiates fibronectin fibrillogenesis, establishing a critical step in cell adhesion and mechanosensing.


Asunto(s)
Matriz Extracelular , Fibronectinas , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Adhesión Celular , Integrinas/metabolismo , Movimiento Celular
17.
Cell Death Differ ; 30(6): 1601-1614, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095157

RESUMEN

The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFß-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.


Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Proteínas Señalizadoras YAP , Diferenciación Celular , Epitelio Corneal/metabolismo , Mecanotransducción Celular , Nicho de Células Madre , Células Madre/metabolismo , Humanos , Proteínas Señalizadoras YAP/metabolismo
18.
Trends Cell Biol ; 32(1): 4-7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801376

RESUMEN

Recent studies highlight how stem cells (SCs) perceive and respond to various biomechanical cues from the extracellular niche and neighboring cells. These combined inputs drive certain stem cell behaviors, including cell fate decisions, and may influence aging and disease.


Asunto(s)
Fenómenos Biomecánicos , Células Madre , Diferenciación Celular/fisiología , Humanos , Células Madre/citología
19.
Front Cell Dev Biol ; 10: 959521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927990

RESUMEN

Cancer cells normally grow on soft surfaces due to impaired mechanosensing of the extracellular matrix rigidity. Upon restoration of proper mechanosensing, cancer cells undergo apoptosis on soft surfaces (anoikis) like most normal cells. However, the link between mechanosensing and activation of anoikis is not clear. Here we show that death associated protein kinase 1 (DAPK1), a tumor suppressor that activates cell death, is directly linked to anoikis activation through rigidity sensing. We find that when rigidity sensing is decreased through inhibition of DAPK1 activity, cells are transformed for growth on soft matrices. Further, DAPK1 catalyzes matrix adhesion assembly and is part of adhesions on rigid surfaces. This pathway involves DAPK1 phosphorylation of tropomyosin1.1, the talin1 head domain, and tyrosine phosphorylation of DAPK1 by Src. On soft surfaces, DAPK1 rapidly dissociates from the adhesion complexes and activates apoptosis as catalyzed by PTPN12 activity and talin1 head. Thus, DAPK1 is important for adhesion assembly on rigid surfaces and the activation of anoikis on soft surfaces through its binding to rigidity-sensing modules.

20.
J Cell Biol ; 221(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35652786

RESUMEN

Both cell-cell and cell-matrix adhesions are regulated by mechanical signals, but the mechanobiological processes that mediate the cross talk between these structures are poorly understood. Here we show that α-catenin, a mechanosensitive protein that is classically linked with cadherin-based adhesions, associates with and regulates integrin adhesions. α-Catenin is recruited to the edges of mesenchymal cells, where it interacts with F-actin. This is followed by mutual retrograde flow of α-catenin and F-actin from the cell edge, during which α-catenin interacts with vinculin within integrin adhesions. This interaction affects adhesion maturation, stress-fiber assembly, and force transmission to the matrix. In epithelial cells, α-catenin is present in cell-cell adhesions and absent from cell-matrix adhesions. However, when these cells undergo epithelial-to-mesenchymal transition, α-catenin transitions to the cell edge, where it facilitates proper mechanosensing. This is highlighted by the ability of α-catenin-depleted cells to grow on soft matrices. These results suggest a dual role of α-catenin in mechanosensing, through both cell-cell and cell-matrix adhesions.


Asunto(s)
Actinas , Matriz Extracelular , Integrinas , Mecanotransducción Celular , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Células Cultivadas , Humanos , alfa Catenina/genética , alfa Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA