Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 593(7857): 61-66, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953410

RESUMEN

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Asunto(s)
Suministros de Energía Eléctrica , Electroquímica , Péptidos/química , Animales , Bovinos , Línea Celular , Supervivencia Celular , Óxidos N-Cíclicos/química , Ratones , Osteoblastos/citología , Oxidación-Reducción , Péptidos/síntesis química , Desarrollo Sostenible , Viológenos/química
2.
J Am Chem Soc ; 145(28): 15405-15413, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409894

RESUMEN

The substituents present upon five-membered bicyclic glucose carbonate monomers were found to greatly affect the reactivities and regioselectivities during ring-opening polymerization (ROP), which contrast in significant and interesting ways from previous studies on similar systems, while also leading to predictable effects on the thermal properties of the resulting polycarbonates. Polymerization behaviors were probed for a series of five five-membered bicyclic 2,3-glucose-carbonate monomers having 4,6-ether, -carbonate, or -sulfonyl urethane protecting groups, under catalysis with three different organobase catalysts. Irrespective of the organobase catalyst employed, regioregular polycarbonates were obtained via ROP of monomers with ether substituents, while the backbone connectivities of polymers derived from monomers with carbonate protecting groups suffered transcarbonylation reactions, resulting in irregular backbone connectivities and broad molar mass distributions. The sulfonyl urethane-protected monomers were unable to undergo organobase-catalyzed ROP, possibly due to the acidity of the proton in urethane functionality. The thermal behaviors of polycarbonates with ether and carbonate pendant groups were investigated in terms of thermal stability and glass transition temperature (Tg). A two-stage thermal decomposition was observed when tert-butyloxycarbonyl (BOC) groups were employed as protecting side chains, while all other polycarbonates presented high thermal stabilities with a single-stage thermal degradation. Tg was greatly affected by side-chain bulkiness, with values ranging from 39 to 139 °C. These fundamental findings of glucose-based polycarbonates may facilitate the development of next-generation sustainable highly functional materials.

3.
J Am Chem Soc ; 145(33): 18560-18567, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578470

RESUMEN

Polymers constructed from copolymerizations of carbohydrates with C1 feedstocks are promising targets that provide transformation of sustainably sourced building blocks into next-generation, environmentally degradable plastic materials. In this work, the initial intention was to expand beyond polycarbonates prepared by the copolymerization of oxetanes derived from d-xylose with CO2 and incorporate sulfur atoms through the establishment of monothiocarbonates that would provide the ability to modulate the backbone compositions and result in unique effects upon the chemical, physical, and mechanical properties. Therefore, the syntheses of poly(1,2-O-isopropylidene-α-d-xylofuranose monothiocarbonate)s were investigated by ring-opening copolymerizations of 3,5-anhydro-1,2-O-isopropylidene-α-d-xylofuranose with carbonyl sulfide (COS) facilitated by (salen)CrCl/cocatalyst systems. Unexpectedly, when copolymerization temperatures exceeded 40 °C, oxygen/sulfur exchange reactions occurred, causing in situ dynamic backbone restructuring through a series of inter-related and complex mechanistic pathways that transformed monothiocarbonate monomeric repeating units into carbonate and thioether dimeric repeating units. These backbone structural compositional transformations were investigated through a combination of Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques and were demonstrated to be easily tuned via temperature and catalyst/cocatalyst stoichiometries. Furthermore, the regiochemistries of these d-xylose-based sulfur-containing polymers revealed that monothiocarbonate monomeric repeating units had a head-to-tail connectivity, while the carbonate and thioether dimeric repeating units had dual head-to-head and tail-to-tail connectivities. These sulfur-containing polymers exhibited enhanced thermal stabilities compared to their oxygen-containing polycarbonate analogues and revealed variations in the effects upon glass transition temperatures, demonstrating the effect of sulfur incorporation in the polymer backbone. These findings contribute to the advancement of sustainable polymer production by using feedstocks of natural origin coupled with COS.

4.
J Am Chem Soc ; 144(18): 8084-8095, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35471843

RESUMEN

Polyvinyl polymers bearing pendant hole transport functionalities have been extensively explored for solution-processed hole transport layer (HTL) technologies, yet there are only rare examples of high anisotropic packing of the HT moieties of these polymers into substrate-parallel orientations within HTL films. For small molecules, substrate-parallel alignment of HT moieties is a well-established approach to improve overall device performance. To address the longstanding challenge of extension from vapor-deposited small molecules to solution-processable polymer systems, a fundamental chemistry tactic is reported here, involving the positioning of HT side chains within macromolecular frameworks by the construction of HT polymers having bottlebrush topologies. Applying state-of-the-art polymer synthetic techniques, various functional subunits, including triphenylamine (TPA) for hole transport and adhesion to the substrate, and perfluoro alkyl-substituted benzyloxy styrene for migration to the air interface, were organized with exquisite control over the composition and placement throughout the bottlebrush topology. Upon assembling the HT bottlebrush (HTB) polymers into monolayered HTL films on various substrates through spin-casting and thermal annealing, the backbones of HTBs were vertically aligned while the grafts with pendant TPAs were extended parallel to the substrate. The overall design realized high TPA π-stacking along the out-of-plane direction of the substrate in the HTLs, which doubled the efficiency of organic light-emitting diodes compared with linear poly(vinyl triphenylamine)s.

5.
Methods ; 190: 26-32, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32243921

RESUMEN

A robust data mining algorithm is presented as a critical solution to the challenge of managing intensive data generated from the recently developed multiplexing techniques, which allow simultaneous detection of up to 500 biomarkers in a few microliters of a single sample. Furthermore, detailed methodology is provided for exploiting the new algorithm along with examples for description of the first application as a powerful diagnostic and therapeutic monitoring tool in the management of breast cancer, as a disease model.


Asunto(s)
Técnicas Biosensibles , Algoritmos , Biomarcadores
6.
J Nanobiotechnology ; 20(1): 536, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539809

RESUMEN

Despite significant progress in synthetic polymer chemistry and in control over tuning the structures and morphologies of nanoparticles, studies on morphologic design of nanomaterials for the purpose of optimizing antimicrobial activity have yielded mixed results. When designing antimicrobial materials, it is important to consider two distinctly different modes and mechanisms of activity-those that involve direct interactions with bacterial cells, and those that promote the entry of nanomaterials into infected host cells to gain access to intracellular pathogens. Antibacterial activity of nanoparticles may involve direct interactions with organisms and/or release of antibacterial cargo, and these activities depend on attractive interactions and contact areas between particles and bacterial or host cell surfaces, local curvature and dynamics of the particles, all of which are functions of nanoparticle shape. Bacteria may exist as spheres, rods, helices, or even in uncommon shapes (e.g., box- and star-shaped) and, furthermore, may transform into other morphologies along their lifespan. For bacteria that invade host cells, multivalent interactions are involved and are dependent upon bacterial size and shape. Therefore, mimicking bacterial shapes has been hypothesized to impact intracellular delivery of antimicrobial nanostructures. Indeed, designing complementarities between the shapes of microorganisms with nanoparticle platforms that are designed for antimicrobial delivery offers interesting new perspectives toward future nanomedicines. Some studies have reported improved antimicrobial activities with spherical shapes compared to non-spherical constructs, whereas other studies have reported higher activity for non-spherical structures (e.g., rod, discoid, cylinder, etc.). The shapes of nano- and microparticles have also been shown to impact their rates and extents of uptake by mammalian cells (macrophages, epithelial cells, and others). However, in most of these studies, nanoparticle morphology was not intentionally designed to mimic specific bacterial shape. Herein, the morphologic designs of nanoparticles that possess antimicrobial activities per se and those designed to deliver antimicrobial agent cargoes are reviewed. Furthermore, hypotheses beyond shape dependence and additional factors that help to explain apparent discrepancies among studies are highlighted.


Asunto(s)
Antiinfecciosos , Nanopartículas , Nanoestructuras , Animales , Nanopartículas/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Polímeros , Transporte Biológico , Mamíferos
7.
Nano Lett ; 21(12): 4990-4998, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34115938

RESUMEN

Platelet-like and cylindrical nanostructures from sugar-based polymers are designed to mimic the aspect ratio of bacteria and achieve uroepithelial cell binding and internalization, thereby improving their potential for local treatment of recurrent urinary tract infections. Polymer nanostructures, derived from amphiphilic block polymers composed of zwitterionic poly(d-glucose carbonate) and semicrystalline poly(l-lactide) segments, were constructed with morphologies that could be tuned to enhance uroepithelial cell binding. These nanoparticles exhibited negligible cytotoxicity, immunotoxicity, and cytokine adsorption, while also offering substantial silver cation loading capacity, extended release, and in vitro antimicrobial activity (as effective as free silver cations) against uropathogenic Escherichia coli. In comparison to spherical analogues, cylindrical and platelet-like nanostructures engaged in significantly higher association with uroepithelial cells, as measured by flow cytometry; despite their larger size, platelet-like nanostructures maintained the capacity for cell internalization. This work establishes initial evidence of degradable platelet-shaped nanostructures as versatile therapeutic carriers for treatment of epithelial infections.


Asunto(s)
Nanopartículas , Polímeros , Antibacterianos/farmacología , Plata , Azúcares
8.
Nano Lett ; 20(9): 6563-6571, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787153

RESUMEN

Interactions between drug molecules, nanocarrier components, and surrounding media influence the properties and therapeutic efficacies of nanomedicines. In this study, we investigate the role that reversible covalent loading of a hydrophobic drug exerts on intra-nanoparticle physical properties and explore the utility of this payload control strategy for tuning the access of active agents and, thereby, the stimuli sensitivity of smart nanomaterials. Glutathione sensitivity was controlled via altering the degree of hydrophobic payload loading of disulfide-linked camptothecin-conjugated sugar-based nanomaterials. Increases in degrees of camptothecin conjugation (fCPT) decreased aqueous accessibility and reduced glutathione-triggered release. Although the lowest fCPT gave the fastest camptothecin release, it resulted in the lowest camptothecin concentration. Remarkably, the highest fCPT resulted in a 5.5-fold improved selectivity against cancer vs noncancerous cells. This work represents an advancement in drug carrier design by demonstrating the importance of controlling the amount of drug loading on the overall payload and its availability.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Camptotecina/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Nanomedicina
9.
J Am Chem Soc ; 142(40): 16974-16981, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32965109

RESUMEN

The extent of participation of side-chain functionalities during the 1,5,7-triazabicyclo[5.4.0]dec-5-ene (TBD) organobase-catalyzed ring-opening polymerizations (ROP) of six-membered cyclic d-glucose-based carbonates was found to result in significantly different regiochemical outcomes. High regioselectivity was observed for naturally derived poly(4,6-d-glucose carbonate)s (PGCs) containing carbonate side chain substituents in the 2- and 3-positions, whereas regioirregularity was found for analogous PGCs with ether side-chain substituents. The backbone connectivities and structural details of these PGCs were examined through a combination of comprehensive 1D and 2D NMR studies on unimers and dimers, verifying the ring-opening preferences and indicating the contribution of side-chain functionalities in regioselective ROP processes. A molecular understanding of the curious role of side-chain functionalities was demonstrated via density functional theory calculations, revealing stabilization effects of intermolecular hydrogen bonding between the side-chain functionalities and TBD in the transition states. Overall, this work provides fundamental insights into the organocatalytic ROP of these specific six-membered asymmetric cyclic glucose carbonates. More importantly, these findings serve as a foundation for future design strategies that incorporate adjacent functionalities within monomers to act as directing groups and impart molecular interactions that define regiochemical ring-opening.

10.
Inorg Chem ; 59(23): 16998-17008, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33185436

RESUMEN

Rates of NO release from synthetic dinitrosyl iron complexes (DNICs) are shown to be responsive to coordination environments about iron. The effect of biologically relevant cellular components, glutathione and histidine, on the rate of NO release from a dimeric, "Roussin's Red Ester", DNIC with bridging µ-S thioglucose ligands, SGlucRRE or [(µ-SGluc)Fe(NO)2]2 (SGluc = 1-thio-ß-d-glucose tetraacetate), was investigated. From the Griess assay and X-band EPR data, decomposition of the product from the histidine-cleaved dimer, [(SGluc)(NHis)Fe(NO)2], generated Fe(III) and increased the NO release rate in aqueous media when compared to the intact SGlucRRE precursor. In contrast, increasing concentrations of exogenous glutathione generated the stable [(SGluc)(GS)Fe(NO)2]- anion and depressed the rate of NO release. Both of the cleaved, monomeric intermediates were characterized with ESI-MS, EPR, and FT-IR spectroscopies. On the basis of the Griess assay coupled with data from an intracellular fluorometric probe, both the monomeric DNICs and dimeric SGlucRRE diffuse into smooth muscle cells, chosen as appropriate archetypes of vascular relaxation, and release their NO payload. Ultimately, this work provides insight into tuning NO release beyond the design of DNICs, through the incubation with safe, accessible biological molecules.


Asunto(s)
Glutatión/química , Histidina/química , Hierro/química , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Células Cultivadas , Espectroscopía de Resonancia por Spin del Electrón , Fluorescencia , Humanos , Conformación Molecular , Óxidos de Nitrógeno/síntesis química
11.
Methods ; 158: 81-85, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30660862

RESUMEN

Particulate materials at nano- and micro-scales have widespread pharmaceutical and medical applications. Understanding the interactions of these materials with biological systems is crucial for the design of clinically-viable biomaterials of high safety profiles. Immunomodulatory effects of particulate materials can be studied via multiplexing techniques that are capable of measuring up to 500 biomarkers in a few microliters of biological samples. However, there are several challenges towards the use of multiplexing techniques for testing the ability of nanomaterials to induce the release of various biomarkers. As one of the potential challenges, the adsorption of biomarkers on surfaces or within internal structures of nano- or micro-particles has been explored to a lesser extent, although it can lead to biased conclusions and data misinterpretation. Herein, we provide technical details on the use of multiplexing techniques for the evaluation of immunomodulatory effects of nanoparticulates. The same principles can also be applied for the assessment of microparticles. Importantly, precautions to avoid artifacts and data misinterpretation, due to interactions between particles and biomarkers, are provided.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Sistema Inmunológico/efectos de los fármacos , Ensayo de Materiales/métodos , Nanoestructuras/efectos adversos , Animales , Biomarcadores/análisis , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Ensayo de Materiales/instrumentación , Microesferas , Tamaño de la Partícula , Propiedades de Superficie
12.
J Am Chem Soc ; 141(37): 14916-14930, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31497951

RESUMEN

In this paper, we present a computational reverse-engineering analysis for scattering experiments (CREASE) based on genetic algorithms and molecular simulation to analyze the structure within self-assembled amphiphilic polymer solutions. For a given input comprised of scattering intensity profiles and information about the amphiphilic polymers in solution, CREASE outputs the structure of the self-assembled micelles (e.g., core and corona diameters, aggregation number) as well as the conformations of the amphiphilic polymer chains in the micelle (e.g., blocks' radii of gyration, chain radii of gyration, monomer concentration profiles). First, we demonstrate CREASE's ability to reverse-engineer self-assembled nanostructures for scattering profiles obtained from molecular simulations (or in silico experiments) of generic coarse-grained bead-spring polymer chains in an implicit solvent. We then present CREASE's outputs for scattering profiles obtained from small-angle neutron scattering (SANS) experiments of poly(d-glucose carbonate) block copolymers in solution that exhibit assembly into spherical nanoparticles. The success of this method is demonstrated by its ability to replicate, quantitatively, the results from in silico experiments and by the agreement in micelle core and corona sizes obtained from microscopy of the in vitro solutions. The primary strength of CREASE is its ability to analyze scattering profiles without an off-the-shelf scattering model and the ability to provide chain and monomer level structural information that is otherwise difficult to obtain from scattering and microscopy alone.

13.
J Am Chem Soc ; 141(50): 19542-19545, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31820965

RESUMEN

As a rapid, controllable, and easily transferrable approach to the preparation of antimicrobial nanoparticle systems, a one-step, light-driven procedure was developed to produce asymmetric hybrid inorganic-organic nanoparticles (NPs) directly from a homogeneous Ag/polymer mixture. An amphiphilic triblock polymer was designed and synthesized to build biocompatible NPs, consisting of poly(ethylene oxide) (PEO), carboxylic acid-functionalized polyphosphoester (PPE), and poly(l-lactide) (PLLA). Unexpectedly, snowman-like asymmetric nanostructures were subsequently obtained by simply loading silver cations into the polymeric micelles together with purification via centrifugation. With an understanding of the chemistry of the asymmetric NP formation, a controllable preparation strategy was developed by applying UV irradiation. A morphology transition was observed by transmission electron microscopy over the UV irradiation time, from small silver NPs distributed inside the micelles into snowman-like asymmetric NPs, which hold promise for potential antimicrobial applications with their unique two-stage silver release profiles.


Asunto(s)
Luz , Nanopartículas/química , Polímeros/química , Plata/química , Procesos Fotoquímicos
14.
Mol Pharm ; 16(7): 3178-3187, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31244220

RESUMEN

In this study, dinitrosyl iron complexes (DNICs) are shown to deliver nitric oxide (NO) into the cytosol of vascular smooth muscle cells (SMCs), which play a major role in vascular relaxation and contraction. Malfunction of SMCs can lead to hypertension, asthma, and erectile dysfunction, among other disorders. For comparison of the five DNIC derivatives, the following protocols were examined: (a) the Griess assay to detect nitrite (derived from NO conversion) in the absence and presence of SMCs; (b) the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay for cell viability; (c) an immunotoxicity assay to establish if DNICs stimulate immune response; and (d) a fluorometric assay to detect intracellular NO from treatment with DNICs. Dimeric Roussin's red ester (RRE)-type {Fe(NO)2}9 complexes containing phenylthiolate bridges, [(µ-SPh)Fe(NO)2]2 or SPhRRE, were found to deliver NO with the lowest effect on cell toxicity (i.e., highest IC50). In contrast, the RRE-DNIC with the biocompatible thioglucose moiety, [(µ-SGlu)Fe(NO)2]2 (SGlu = 1-thio-ß-d-glucose tetraacetate) or SGluRRE, delivered a higher concentration of NO to the cytosol of SMCs with a 10-fold decrease in IC50. Additionally, monomeric DNICs stabilized by a bulky N-heterocyclic carbene (NHC), namely, 1,3-bis(2,4,6-trimethylphenyl)imidazolidene (IMes), were synthesized and yielded the DNIC complexes SGluNHC, [IMes(SGlu)Fe(NO)2], and SPhNHC, [IMes(SPh)Fe(NO)2]. These oxidized {Fe(NO)2}9 NHC DNICs have an IC50 of ∼7 µM; however, the NHC-based complexes did not transfer NO into the SMC. Per contra, the reduced, mononuclear {Fe(NO)2}10 neocuproine-based DNIC, neoDNIC, depressed the viability of the SMCs, as well as generated an increase of intracellular NO. Regardless of the coordination environment or oxidation state, all DNICs showed a dinitrosyl iron unit (DNIU)-dependent increase in viability. This study demonstrates a structure-function relationship between the DNIU coordination environment and the efficacy of the DNIC treatments.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Hierro/metabolismo , Hierro/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Óxidos de Nitrógeno/metabolismo , Óxidos de Nitrógeno/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Citosol/metabolismo , Dimerización , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Hierro/química , Ratones , Músculo Liso Vascular/citología , Óxidos de Nitrógeno/química , Oxidación-Reducción , Células RAW 264.7 , Ratas , Solubilidad , Agua/química
15.
Mol Pharm ; 16(4): 1606-1619, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30817887

RESUMEN

Pseudomonas aeruginosa has been detected in the lungs of ∼50% of patients with cystic fibrosis (CF), including 20% of adult CF patients. The majority of these adult patients harbor multi-drug resistant (MDR) strains, limiting the available treatment options. Silver has long been used as a broad-spectrum antimicrobial agent with a low incidence of resistance. Despite low toxicity, poor availability of silver cations mandates a high dosage to effectively eradicate infections. To address this shortcoming of silver, nanoparticles have been used as delivery devices to improve treatment outcomes. Furthermore, studies have demonstrated that synergistic combinations with careful dose calibrations and efficient delivery systems result in superior antimicrobial activity while avoiding potential side effects of both therapeutics. Here 4-epi-minocycline, a metabolite of minocycline, was identified as an active antimicrobial against P. aeruginosa using a high-throughput screen. The antimicrobial activities of 4-epi-minocycline, minocycline, and silver acetate against clinical isolates of P. aeruginosa obtained from CF patients were evaluated in vitro. Next, the synergistic activity of the silver/minocycline combination against P. aeruginosa isolates was investigated using checkerboard assays and identified with end-point colony forming unit determination assays. Finally, nanoparticles coloaded with minocycline and silver were evaluated in vitro for antimicrobial activity. The results demonstrated that both silver and minocycline are potent antimicrobials alone and that the combination allows a reduced dosage of both therapeutics to achieve the same antimicrobial effect. Furthermore, the proposed synergistic silver/minocycline combination can be coloaded into nanoparticles as a next-generation antibiotic to combat the threats presented by MDR pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Nanopartículas del Metal/química , Minociclina/administración & dosificación , Polifosfatos/química , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Plata/química , Antibacterianos/administración & dosificación , Humanos , Infecciones por Pseudomonas/microbiología
16.
Langmuir ; 35(5): 1503-1512, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30346776

RESUMEN

A zwitterionic polyphosphoester (zPPE), specifically l-cysteine-functionalized poly(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane (zPBYP), has been developed as a poly(ethylene glycol) (PEG) alternative coating material for gold nanoparticles (AuNPs), the most extensively investigated metal nanoparticulate platform toward molecular imaging, photothermal therapy, and drug delivery applications. Thiol-yne conjugation of cysteine transformed an initial azido-terminated and alkynyl-functionalized PBYP homopolymer into zPBYP, offering hydrolytic degradability, biocompatibility, and versatile reactive moieties for installation of a range of functional groups. Despite minor degradation during purification, zPPEs were able to stabilize AuNPs presumably through multivalent interactions between combinations of the side chain zwitterions (thioether and phosphoester groups of the zPPEs with the AuNPs). 31P NMR studies in D2O revealed ca. 20% hydrolysis of the phosphoester moieties of the repeat units had occurred during the workup and purification by aqueous dialysis at pH 3 over ca. 1 d, as observed by the 31P signal of the phosphotriesters resonating at ca. -0.5 to -1.7 shifting downfield to ca. 1.1 to -0.4 ppm, attributed to transformation to phosphates. Further hydrolysis of side chain and backbone units proceeded to an extent of ca. 75% over the next 2 d in nanopure water (pH 5-6). The NMR degradation results were consistent with the broadening and red-shift of the surface plasmon resonance (SPR) observed by UV-vis spectroscopy of the zPPE-coated AuNPs in water over time. All AuNP formulations in this study, including those with citrate, PEG, and zPPE coatings, exhibited negligible immunotoxicity, as determined by cytokine overexpression in the presence of the nanostructures relative to those in cell culture medium. Notably, the zPPE-coated AuNPs displayed superior antifouling properties, as assessed by the extent of cytokine adsorption relative to both the PEGylated and citrate-coated AuNPs. Taken together, the physicochemical and biological evaluations of zPPE-coated AuNPs in conjunction with PEGylated and citrate-coated analogues indicate the promise of zPPEs as favorable alternatives to PEG coatings, with negligible immunotoxicity, good antifouling performance, and versatile reactive groups that enable the preparation of highly tailored nanomaterials for diverse applications.


Asunto(s)
Plásticos Biodegradables/química , Materiales Biocompatibles Revestidos/química , Nanopartículas del Metal/química , Adsorción , Animales , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/metabolismo , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/metabolismo , Citocinas/química , Citocinas/metabolismo , Oro/química , Ratones , Unión Proteica , Células RAW 264.7
17.
Biomacromolecules ; 20(1): 109-117, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30179461

RESUMEN

Magnolol, a neolignan natural product with antioxidant properties, contains inherent, orthogonal, phenolic, and alkenyl reactive groups that were used in both direct thermoset synthesis, as well as the stepwise synthesis of a small library of monomers, followed by transformation into thermoset materials. Each monomer from the small library was prepared via a single step functionalization reaction of the phenolic groups of magnolol. Thermoset materials were realized through solvent-free, thiol-ene reactions, and the resulting cross-linked materials were each comprised of thioether and ester linkages, with one retaining the hydrophilic phenols from magnolol, another having the phenols protected as an acetonide, and two others incorporating the phenols into additional cross-linking sites via hydrolytically labile carbonates or stable ether linkages. With this diversity of chemical compositions and structures, the thermosets displayed a range of thermomechanical properties including glass transition temperatures, Tg, 29-52 °C, onset of thermal degradation, Td, from about 290-360 °C, and ultimate strength up to 50 MPa. These tunable materials were studied in their degradation and biological properties with the aim of exploiting the antioxidant properties of the natural product. Hydrolytic degradation occurred under basic conditions (pH = 11) in all thermosets, but with kinetics that were dependent upon their chemical structures and mechanical properties: 20% mass loss was observed at 5, 7, 27, and 40 weeks for the thermosets produced from magnolol directly, acetonide-protected magnolol, bis(allyl carbonate)-functionalized magnolol, and bis(allyl ether)-functionalized magnolol, respectively. Isolated degradation products and model compounds displayed antioxidant properties similar to magnolol, as determined by both UV-vis and in vitro reactive oxygen species (ROS) assays. As these magnolol-based thermosets were found to also allow for extended cell culture, these materials may serve as promising degradable biomaterials.


Asunto(s)
Antioxidantes/síntesis química , Plásticos Biodegradables/síntesis química , Compuestos de Bifenilo/química , Lignanos/síntesis química , Polímeros de Estímulo Receptivo/síntesis química , Ácido 3-Mercaptopropiónico/análogos & derivados , Ácido 3-Mercaptopropiónico/química , Animales , Antioxidantes/farmacología , Bovinos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Lignanos/química , Fenoles/química , Glicoles de Propileno/química , Estrés Mecánico , Temperatura
18.
J Am Chem Soc ; 140(47): 16053-16057, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30418768

RESUMEN

Fundamental studies that gain an understanding of the tunability of physical properties of natural product-based polymers are vital for optimizing their performance in extensive applications. Variation of glass transition temperature ( Tg) was studied as a function of the side chain structure and molar mass for linear poly(glucose carbonate)s. A remarkable range of Tg values, from 38 to 125 °C, was accomplished with six different alkyloxycarbonyl side chains. The impact of molar mass on Tg was investigated for two series of polymers and discrete oligomers synthesized and fractionated with precise control over the degrees of polymerization. The Tg was found to be greatly influenced by a synergistic effect of the flexibility and bulkiness of the repeating unit side chain, as well as the chain end relative free volume. This work represents an important advance in the development of glucose-based polycarbonates, as materials that possess high degrees of functionalizability to be capable of exhibiting diversified physicochemical and thermal properties by simple side chain modification.

19.
J Am Chem Soc ; 140(4): 1438-1446, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29350522

RESUMEN

Although nanomedicines have been pursued for nearly 20 years, fundamental chemical strategies that seek to optimize both the drug and drug carrier together in a concerted effort remain uncommon yet may be powerful. In this work, two block polymers and one dimeric prodrug molecule were designed to be coassembled into degradable, functional nanocarriers, where the chemistry of each component was defined to accomplish important tasks. The result is a poly(ethylene glycol) (PEG)-protected redox-responsive dimeric paclitaxel (diPTX)-loaded cationic poly(d-glucose carbonate) micelle (diPTX@CPGC). These nanostructures showed tunable sizes and surface charges and displayed controlled PTX drug release profiles in the presence of reducing agents, such as glutathione (GSH) and dithiothreitol (DTT), thereby resulting in significant selectivity for killing cancer cells over healthy cells. Compared to free PTX and diPTX, diPTX@CPGC exhibited improved tumor penetration and significant inhibition of tumor cell growth toward osteosarcoma (OS) lung metastases with minimal side effects both in vitro and in vivo, indicating the promise of diPTX@CPGC as optimized anticancer therapeutic agents for treatment of OS lung metastases.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Glucosa/química , Glutatión/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Osteosarcoma/tratamiento farmacológico , Paclitaxel/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Proliferación Celular/efectos de los fármacos , Dimerización , Ditiotreitol/síntesis química , Ditiotreitol/química , Ditiotreitol/farmacología , Portadores de Fármacos/química , Diseño de Fármacos , Glutatión/síntesis química , Glutatión/química , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Conformación Molecular , Osteosarcoma/patología , Paclitaxel/síntesis química , Paclitaxel/química
20.
Biomacromolecules ; 19(4): 1212-1222, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29526096

RESUMEN

To expand the range of functional polymer materials to include fully hydrolytically degradable systems that bear bioinspired phosphorus-containing linkages both along the backbone and as cationic side chain moieties for packaging and delivery of nucleic acids, phosphonium-functionalized polyphosphoester- block-poly(l-lactide) copolymers of various compositions were synthesized, fully characterized, and their self-assembly into nanoparticles were studied. First, an alkyne-functionalized polyphosphoester- block-poly(l-lactide) copolymer was synthesized via a one pot sequential ring opening polymerization of an alkyne-functionalized phospholane monomer, followed by the addition of l-lactide to grow the second block. Second, the alkynyl side groups of the polyphosphoester block were functionalized via photoinitiated thiol-yne radical addition of a phosphonium-functionalized free thiol. The polymers of varying phosphonium substitution degrees were self-assembled in aqueous buffers to afford formation of well-defined core-shell assemblies with an average size ranging between 30 and 50 nm, as determined by dynamic light scattering. Intracellular delivery of the nanoparticles and their effects on cell viability and capability at enhancing transfection efficiency of nucleic acids (e.g., siRNA) were investigated. Cell viability assays demonstrated limited toxicity of the assembly to RAW 264.7 mouse macrophages, except at high polymer concentrations, where the polymer of high degree of phosphonium functionalization induced relatively higher cytotoxicity. Transfection efficiency was strongly affected by the phosphonium-to-phosphate (P+/P-) ratios of the polymers and siRNA, respectively. The AllStars Hs Cell Death siRNA complexed to the various copolymers at a P+/P- ratio of 10:1 induced comparable cell death to Lipofectamine. These fully degradable nanoparticles might provide biocompatible nanocarriers for therapeutic nucleic acid delivery.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , Compuestos Organofosforados/química , Polímeros/química , Alquinos/química , Animales , Dioxanos/química , Macrófagos/efectos de los fármacos , Ratones , Nanopartículas/administración & dosificación , Fósforo/química , Polímeros/administración & dosificación , Células RAW 264.7 , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA