Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 32(10): 6891-6899, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35567604

RESUMEN

OBJECTIVES: Successful lung cancer screening delivery requires sensitive, timely reporting of low-dose computed tomography (LDCT) scans, placing a demand on radiology resources. Trained non-radiologist readers and computer-assisted detection (CADe) software may offer strategies to optimise the use of radiology resources without loss of sensitivity. This report examines the accuracy of trained reporting radiographers using CADe support to report LDCT scans performed as part of the Lung Screen Uptake Trial (LSUT). METHODS: In this observational cohort study, two radiographers independently read all LDCT performed within LSUT and reported on the presence of clinically significant nodules and common incidental findings (IFs), including recommendations for management. Reports were compared against a 'reference standard' (RS) derived from nodules identified by study radiologists without CADe, plus consensus radiologist review of any additional nodules identified by the radiographers. RESULTS: A total of 716 scans were included, 158 of which had one or more clinically significant pulmonary nodules as per our RS. Radiographer sensitivity against the RS was 68-73.7%, with specificity of 92.1-92.7%. Sensitivity for detection of proven cancers diagnosed from the baseline scan was 83.3-100%. The spectrum of IFs exceeded what could reasonably be covered in radiographer training. CONCLUSION: Our findings highlight the complexity of LDCT reporting requirements, including the limitations of CADe and the breadth of IFs. We are unable to recommend CADe-supported radiographers as a sole reader of LDCT scans, but propose potential avenues for further research including initial triage of abnormal LDCT or reporting of follow-up surveillance scans. KEY POINTS: • Successful roll-out of mass screening programmes for lung cancer depends on timely, accurate CT scan reporting, placing a demand on existing radiology resources. • This observational cohort study examines the accuracy of trained radiographers using computer-assisted detection (CADe) software to report lung cancer screening CT scans, as a potential means of supporting reporting workflows in LCS programmes. • CADe-supported radiographers were less sensitive than radiologists at identifying clinically significant pulmonary nodules, but had a low false-positive rate and good sensitivity for detection of confirmed cancers.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Computadores , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
2.
BMJ Open ; 14(6): e078227, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38885990

RESUMEN

INTRODUCTION: Diagnostic imaging is vital in emergency departments (EDs). Accessibility and reporting impacts ED workflow and patient care. With radiology workforce shortages, reporting capacity is limited, leading to image interpretation delays. Turnaround times for image reporting are an ED bottleneck. Artificial intelligence (AI) algorithms can improve productivity, efficiency and accuracy in diagnostic radiology, contingent on their clinical efficacy. This includes positively impacting patient care and improving clinical workflow. The ACCEPT-AI study will evaluate Qure.ai's qER software in identifying and prioritising patients with critical findings from AI analysis of non-contrast head CT (NCCT) scans. METHODS AND ANALYSIS: This is a multicentre trial, spanning four diverse sites, over 13 months. It will include all individuals above the age of 18 years who present to the ED, referred for an NCCT. The project will be divided into three consecutive phases (pre-implementation, implementation and post-implementation of the qER solution) in a stepped-wedge design to control for adoption bias and adjust for time-based changes in the background patient characteristics. Pre-implementation involves baseline data for standard care to support the primary and secondary outcomes. The implementation phase includes staff training and qER solution threshold adjustments in detecting target abnormalities adjusted, if necessary. The post-implementation phase will introduce a notification (prioritised flag) in the radiology information system. The radiologist can choose to agree with the qER findings or ignore it according to their clinical judgement before writing and signing off the report. Non-qER processed scans will be handled as per standard care. ETHICS AND DISSEMINATION: The study will be conducted in accordance with the principles of Good Clinical Practice. The protocol was approved by the Research Ethics Committee of East Midlands (Leicester Central), in May 2023 (REC (Research Ethics Committee) 23/EM/0108). Results will be published in peer-reviewed journals and disseminated in scientific findings (ClinicalTrials.gov: NCT06027411) TRIAL REGISTRATION NUMBER: NCT06027411.


Asunto(s)
Inteligencia Artificial , Servicio de Urgencia en Hospital , Tomografía Computarizada por Rayos X , Humanos , Algoritmos , Cabeza/diagnóstico por imagen , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Tomografía Computarizada por Rayos X/métodos
3.
BMJ Open ; 14(2): e079824, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346874

RESUMEN

INTRODUCTION: A non-contrast CT head scan (NCCTH) is the most common cross-sectional imaging investigation requested in the emergency department. Advances in computer vision have led to development of several artificial intelligence (AI) tools to detect abnormalities on NCCTH. These tools are intended to provide clinical decision support for clinicians, rather than stand-alone diagnostic devices. However, validation studies mostly compare AI performance against radiologists, and there is relative paucity of evidence on the impact of AI assistance on other healthcare staff who review NCCTH in their daily clinical practice. METHODS AND ANALYSIS: A retrospective data set of 150 NCCTH will be compiled, to include 60 control cases and 90 cases with intracranial haemorrhage, hypodensities suggestive of infarct, midline shift, mass effect or skull fracture. The intracranial haemorrhage cases will be subclassified into extradural, subdural, subarachnoid, intraparenchymal and intraventricular. 30 readers will be recruited across four National Health Service (NHS) trusts including 10 general radiologists, 15 emergency medicine clinicians and 5 CT radiographers of varying experience. Readers will interpret each scan first without, then with, the assistance of the qER EU 2.0 AI tool, with an intervening 2-week washout period. Using a panel of neuroradiologists as ground truth, the stand-alone performance of qER will be assessed, and its impact on the readers' performance will be analysed as change in accuracy (area under the curve), median review time per scan and self-reported diagnostic confidence. Subgroup analyses will be performed by reader professional group, reader seniority, pathological finding, and neuroradiologist-rated difficulty. ETHICS AND DISSEMINATION: The study has been approved by the UK Healthcare Research Authority (IRAS 310995, approved 13 December 2022). The use of anonymised retrospective NCCTH has been authorised by Oxford University Hospitals. The results will be presented at relevant conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT06018545.


Asunto(s)
Inteligencia Artificial , Medicina Estatal , Humanos , Estudios Retrospectivos , Hemorragias Intracraneales/diagnóstico por imagen , Técnicos Medios en Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA