RESUMEN
Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended 'least-cost' optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ΨPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆Ψ) had an interactive effect on ci : ca. CS, WD and ΨPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon-water balance.
RESUMEN
Adaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, Pi ; metabolite P, PM ; nucleic acid P, PN ; lipid P, PL ; and residual P, PR ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs. Species at the undisturbed low-P site generally exhibited lower concentrations of total leaf P ([Ptotal ]), primarily associated with lower concentrations of Pi , and PN . The relative allocation of P to each fraction varied little among sites, except that higher PL per [Ptotal ] (rPL ) was recorded at the undisturbed low-P site than at the high-P site. This higher rPL , reflecting relative allocation to membranes, was primarily associated with lower concentrations of leaf nitrogen at the undisturbed low-P site than at the high-P site. Associations between leaf P fractions and leaf nitrogen may provide a basis for understanding the variation in plant ecological strategies dependent on soil P availability.
Asunto(s)
Fósforo , Plantas , Humanos , Australia , Fósforo/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Nitrógeno/metabolismo , Suelo , Hojas de la Planta/metabolismoRESUMEN
Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon (C) cycling. However, plants and soil organisms are usually studied separately, leading to a knowledge gap regarding their coordinated contributions to ecosystem C cycling. We explored whether integrated consideration of plant and nematode traits better explained soil organic C (SOC) dynamics than plant or nematode traits considered separately. Our study system was a space-for-time natural restoration chronosequence following agricultural abandonment in a subtropical region, with pioneer, early, mid and climax stages. We identified an integrated fast-slow trait spectrum encompassing plants and nematodes, demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and nematode traits explained more variation in SOC than by either group alone. Structural equation modeling revealed that the integrated fast-slow trait spectrum influenced SOC through its regulation of microbial traits, including microbial C use efficiency and microbial biomass. Our findings confirm the pivotal role of plant-nematode trait coordination in modulating ecosystem C cycling and highlight the value of incorporating belowground traits into biogeochemical cycling under global change scenarios.
RESUMEN
"Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients.
Asunto(s)
Dióxido de Carbono , Suelo , Suelo/química , Clima , Fotosíntesis , Hojas de la Planta , PlantasRESUMEN
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Asunto(s)
Dióxido de Carbono , Hojas de la Planta , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantas , Reproducibilidad de los ResultadosRESUMEN
Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2 and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax ) and leaf N content in enhanced-CO2 experiments and satellite records signify increasing N limitation of primary production. We predicted Vcmax using the coordination hypothesis and estimated changes in leaf-level photosynthetic N for 1982-2016 assuming proportionality with leaf-level Vcmax at 25°C. The whole-canopy photosynthetic N was derived using satellite-based leaf area index (LAI) data and an empirical extinction coefficient for Vcmax , and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern of Vcmax shares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr-1 , while observed leaf (total) N declined by 0.2-0.25% yr-1 . Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf-level responses to rising CO2 , and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation.
Asunto(s)
Dióxido de Carbono , Nitrógeno , Clorofila , Fotosíntesis/fisiología , Hojas de la Planta/fisiologíaRESUMEN
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
Asunto(s)
Estomas de Plantas , Agua , Sequías , Ecosistema , Grano Comestible , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Suelo/química , Agua/fisiología , Xilema/fisiologíaRESUMEN
Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes.
Asunto(s)
Gossypium , Células del Mesófilo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Gossypium/genética , Fotosíntesis , Hojas de la Planta/genéticaRESUMEN
BACKGROUND AND AIMS: The process of domestication has driven dramatic shifts in plant functional traits, including leaf mass per area (LMA). It remains unclear whether domestication has produced concerted shifts in the lower-level anatomical traits that underpin LMA and how these traits in turn affect photosynthesis. METHODS: In this study we investigated controls of LMA and leaf gas exchange by leaf anatomical properties at the cellular, tissue and whole-leaf levels, comparing 26 wild and 31 domesticated genotypes of cotton (Gossypium). KEY RESULTS: As expected, domesticated plants expressed lower LMA, higher photosynthesis and higher stomatal conductance, suggesting a shift towards the 'faster' end of the leaf economics spectrum. At whole-leaf level, variation in LMA was predominantly determined by leaf density (LD) both in wild and domesticated genotypes. At tissue level, higher leaf volume per area (Vleaf) in domesticated genotypes was driven by a simultaneous increase in the volume of epidermal, mesophyll and vascular bundle tissue and airspace, while lower LD resulted from a lower volume of palisade tissue and vascular bundles (which are of high density), paired with a greater volume of epidermis and airspace, which are of low density. The volume of spongy mesophyll exerted direct control on photosynthesis in domesticated genotypes but only indirect control in wild genotypes. At cellular level, a shift to larger but less numerous cells with thinner cell walls underpinned a lower proportion of cell wall mass, and thus a reduction in LD. CONCLUSIONS: Taken together, cotton domestication has triggered synergistic shifts in the underlying determinants of LMA but also photosynthesis, at cell, tissue and whole-leaf levels, resulting in a marked shift in plant ecological strategy.
Asunto(s)
Domesticación , Gossypium , Gossypium/genética , Fotosíntesis , Hojas de la Planta/genética , PlantasRESUMEN
BACKGROUND AND AIMS: Despite the critical role of woody tissues in determining net carbon exchange of terrestrial ecosystems, relatively little is known regarding the drivers of sapwood and bark respiration. METHODS: Using one of the most comprehensive wood respiration datasets to date (82 species from Australian rainforest, savanna and temperate forest), we quantified relationships between tissue respiration rates (Rd) measured in vitro (i.e. 'respiration potential') and physical properties of bark and sapwood, and nitrogen concentration (Nmass) of leaves, sapwood and bark. KEY RESULTS: Across all sites, tissue density and thickness explained similar, and in some cases more, variation in bark and sapwood Rd than did Nmass. Higher density bark and sapwood tissues had lower Rd for a given Nmass than lower density tissues. Rd-Nmass slopes were less steep in thicker compared with thinner-barked species and less steep in sapwood than in bark. Including the interactive effects of Nmass, density and thickness significantly increased the explanatory power for bark and sapwood respiration in branches. Among these models, Nmass contributed more to explanatory power in trunks than in branches, and in sapwood than in bark. Our findings were largely consistent across sites, which varied in their climate, soils and dominant vegetation type, suggesting generality in the observed trait relationships. Compared with a global compilation of leaf, stem and root data, Australian species showed generally lower Rd and Nmass, and less steep Rd-Nmass relationships. CONCLUSIONS: To the best of our knowledge, this is the first study to report control of respiration-nitrogen relationships by physical properties of tissues, and one of few to report respiration-nitrogen relationships in bark and sapwood. Together, our findings indicate a potential path towards improving current estimates of autotrophic respiration by integrating variation across distinct plant tissues.
Asunto(s)
Ecosistema , Madera , Australia , Nitrógeno , Respiración , ÁrbolesRESUMEN
Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.
Asunto(s)
Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Biodiversidad , Bases de Datos Factuales , Variación Genética , Internacionalidad , Modelos Biológicos , Nitrógeno/análisis , Tamaño de los Órganos , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Plantas/clasificación , Reproducción , Semillas/anatomía & histología , Selección Genética , Especificidad de la EspecieRESUMEN
Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits. We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient. Hydraulic and leaf economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits were linked by the sapwood to leaf area ratio (Huber value, vH ). The observed coordination between vH and sapwood hydraulic conductivity (KS ) and photosynthetic capacity (Vcmax ) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH . Leaf drought tolerance (inferred from turgor loss point, -Ψtlp ) increased with wood density, but the trade-off between hydraulic efficiency (KS ) and -Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS , while effects of environment were dominated by variation in temperature. This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models.
Asunto(s)
Fotosíntesis , Hojas de la Planta , Árboles , Agua , MaderaRESUMEN
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Asunto(s)
Sequías , Árboles , Australia , Bosques , Hojas de la Planta , Agua , XilemaRESUMEN
Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
Asunto(s)
Ecosistema , Plantas , Cambio Climático , Hojas de la Planta , Fenómenos Fisiológicos de las PlantasRESUMEN
Domestication involves dramatic phenotypic and physiological diversifications due to successive selection by breeders toward high yield and quality. Although photosynthetic nitrogen use efficiency (PNUE) is a major trait for understanding leaf nitrogen economy, it is unclear whether PNUE of cotton has been improved under domestication. Here, we investigated the effect of domestication on nitrogen allocation to photosynthetic machinery and PNUE in 25 wild and 37 domesticated cotton genotypes. The results showed that domesticated genotypes had higher nitrogen content per mass (Nm), net photosynthesis under saturated light (Asat), and PNUE but similar nitrogen content per area (Na) compared with wild genotypes. As expected, in both genotypes, PNUE was positively related to Asat but negatively correlated with Na. However, the relative contribution of Asat to PNUE was greater than the contribution from Na. Domesticated genotypes had higher nitrogen allocation to light-harvesting (NL, nitrogen in light-harvesting chlorophyll-protein complex), to bioenergetics (Nb, total nitrogen of cytochrome f, ferredoxin NADP reductase, and the coupling factor), and to Rubisco (Nr) than wild genotypes; however, the two genotype groups did not differ in PNUEp, the ratio of Asat to Np (itself the sum of NL, Nb, and Nr). Our results suggest that more nitrogen allocation to photosynthetic machinery has boosted Asat under cotton domestication. Improving the efficiency of nitrogen use in photosynthetic machinery might be future aim to enhance Asat of cotton.
Asunto(s)
Domesticación , Nitrógeno , Fotosíntesis , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismoRESUMEN
BACKGROUND AND AIMS: Leaf size has considerable ecological relevance, making it desirable to obtain leaf size estimations for as many species worldwide as possible. Current global databases, such as TRY, contain leaf size data for ~30 000 species, which is only ~8% of known species worldwide. Yet, taxonomic descriptions exist for the large majority of the remainder. Here we propose a simple method to exploit information on leaf length, width and shape from species descriptions to robustly estimate leaf areas, thus closing this considerable knowledge gap for this important plant functional trait. METHODS: Using a global dataset of all major leaf shapes measured on 3125 leaves from 780 taxa, we quantified scaling functions that estimate leaf size as a product of leaf length, width and a leaf shape-specific correction factor. We validated our method by comparing leaf size estimates with those obtained from image recognition software and compared our approach with the widely used correction factor of 2/3. KEY RESULTS: Correction factors ranged from 0.39 for highly dissected, lobed leaves to 0.79 for oblate leaves. Leaf size estimation using leaf shape-specific correction factors was more accurate and precise than estimates obtained from the correction factor of 2/3. CONCLUSION: Our method presents a tractable solution to accurately estimate leaf size when only information on leaf length, width and shape is available or when labour and time constraints prevent usage of image recognition software. We see promise in applying our method to data from species descriptions (including from fossils), databases, field work and on herbarium vouchers, especially when non-destructive in situ measurements are needed.
Asunto(s)
Hojas de la Planta , Programas Informáticos , PlantasRESUMEN
Leaf area (LA), mass per area (LMA), nitrogen per unit area (Narea ) and the leaf-internal to ambient CO2 ratio (χ) are fundamental traits for plant functional ecology and vegetation modelling. Here we aimed to assess how their variation, within and between species, tracks environmental gradients. Measurements were made on 705 species from 116 sites within a broad north-south transect from tropical to temperate Australia. Trait responses to environment were quantified using multiple regression; within- and between-species responses were compared using analysis of covariance and trait-gradient analysis. Leaf area, the leaf economics spectrum (indexed by LMA and Narea ) and χ (from stable carbon isotope ratios) varied almost independently among species. Across sites, however, χ and LA increased with mean growing-season temperature (mGDD0 ) and decreased with vapour pressure deficit (mVPD0 ) and soil pH. LMA and Narea showed the reverse pattern. Climate responses agreed with expectations based on optimality principles. Within-species variability contributed < 10% to geographical variation in LA but > 90% for χ, with LMA and Narea intermediate. These findings support the hypothesis that acclimation within individuals, adaptation within species and selection among species combine to create predictable relationships between traits and environment. However, the contribution of acclimation/adaptation vs species selection differs among traits.
Asunto(s)
Clima , Hojas de la Planta , Australia , Fenotipo , SueloRESUMEN
Photosynthetic 'least-cost' theory posits that the optimal trait combination for a given environment is that where the summed costs of photosynthetic water and nutrient acquisition/use are minimised. The effects of soil water and nutrient availability on photosynthesis should be stronger as climate-related costs for both resources increase. Two independent datasets of photosynthetic traits, Globamax (1509 species, 288 sites) and Glob13C (3645 species, 594 sites), were used to quantify biophysical and biochemical limitations of photosynthesis and the key variable Ci /Ca (CO2 drawdown during photosynthesis). Climate and soil variables were associated with both datasets. The biochemical photosynthetic capacity was higher on alkaline soils. This effect was strongest at more arid sites, where water unit-costs are presumably higher. Higher values of soil silt and depth increased Ci /Ca , likely by providing greater H2 O supply, alleviating biophysical photosynthetic limitation when soil water is scarce. Climate is important in controlling the optimal balance of H2 O and N costs for photosynthesis, but soil properties change these costs, both directly and indirectly. In total, soil properties modify the climate-demand driven predictions of Ci /Ca by up to 30% at a global scale.
Asunto(s)
Suelo , Agua , Carbono , Dióxido de Carbono , Fotosíntesis , Hojas de la Planta/químicaRESUMEN
We used a widely distributed tree Eucalyptus camaldulensis subsp. camaldulensis to partition intraspecific variation in leaf functional traits to genotypic variation and phenotypic plasticity. We examined if genotypic variation is related to the climate of genotype provenance and whether phenotypic plasticity maintains performance in a changing environment. Ten genotypes from different climates were grown in a common garden under watering treatments reproducing the wettest and driest edges of the subspecies' distribution. We measured functional traits reflecting leaf metabolism and associated with growth (respiration rate, nitrogen and phosphorus concentrations, and leaf mass per area) and performance proxies (aboveground biomass and growth rate) each season over a year. Genotypic variation contributed substantially to the variation in aboveground biomass but much less in growth rate and leaf traits. Phenotypic plasticity was a large source of the variation in leaf traits and performance proxies and was greater among sampling dates than between watering treatments. The variation in leaf traits was weakly correlated to performance proxies, and both were unrelated to the climate of genotype provenance. Intraspecific variation in leaf traits arises similarly among genotypes in response to seasonal environmental variation, instead of long-term water availability or climate of genotype provenance.
Asunto(s)
Eucalyptus , Eucalyptus/genética , Genotipo , Hojas de la Planta/genética , Estaciones del Año , AguaRESUMEN
Plant respiration is an important contributor to the proposed positive global carbon-cycle feedback to climate change. However, as a major component, leaf mitochondrial ('dark') respiration (Rd ) differs among species adapted to contrasting environments and is known to acclimate to sustained changes in temperature. No accepted theory explains these phenomena or predicts its magnitude. Here we propose that the acclimation of Rd follows an optimal behaviour related to the need to maintain long-term average photosynthetic capacity (Vcmax ) so that available environmental resources can be most efficiently used for photosynthesis. To test this hypothesis, we extend photosynthetic co-ordination theory to predict the acclimation of Rd to growth temperature via a link to Vcmax , and compare predictions to a global set of measurements from 112 sites spanning all terrestrial biomes. This extended co-ordination theory predicts that field-measured Rd and Vcmax accessed at growth temperature (Rd,tg and Vcmax,tg ) should increase by 3.7% and 5.5% per degree increase in growth temperature. These acclimated responses to growth temperature are less steep than the corresponding instantaneous responses, which increase 8.1% and 9.9% per degree of measurement temperature for Rd and Vcmax respectively. Data-fitted responses proof indistinguishable from the values predicted by our theory, and smaller than the instantaneous responses. Theory and data are also shown to agree that the basal rates of both Rd and Vcmax assessed at 25°C (Rd,25 and Vcmax,25 ) decline by ~4.4% per degree increase in growth temperature. These results provide a parsimonious general theory for Rd acclimation to temperature that is simpler-and potentially more reliable-than the plant functional type-based leaf respiration schemes currently employed in most ecosystem and land-surface models.