Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(9): 1680-1691, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007525

RESUMEN

Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.


Asunto(s)
Factor H de Complemento , Infecciones Meningocócicas , Proteínas Sanguíneas/genética , Factor H de Complemento/genética , Proteínas del Sistema Complemento/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Infecciones Meningocócicas/genética
2.
Clin Infect Dis ; 78(3): 526-534, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37820031

RESUMEN

BACKGROUND: Optimization of antimicrobial stewardship is key to tackling antimicrobial resistance, which is exacerbated by overprescription of antibiotics in pediatric emergency departments (EDs). We described patterns of empiric antibiotic use in European EDs and characterized appropriateness and consistency of prescribing. METHODS: Between August 2016 and December 2019, febrile children attending EDs in 9 European countries with suspected infection were recruited into the PERFORM (Personalised Risk Assessment in Febrile Illness to Optimise Real-Life Management) study. Empiric systemic antibiotic use was determined in view of assigned final "bacterial" or "viral" phenotype. Antibiotics were classified according to the World Health Organization (WHO) AWaRe classification. RESULTS: Of 2130 febrile episodes (excluding children with nonbacterial/nonviral phenotypes), 1549 (72.7%) were assigned a bacterial and 581 (27.3%) a viral phenotype. A total of 1318 of 1549 episodes (85.1%) with a bacterial and 269 of 581 (46.3%) with a viral phenotype received empiric systemic antibiotics (in the first 2 days of admission). Of those, the majority (87.8% in the bacterial and 87.0% in the viral group) received parenteral antibiotics. The top 3 antibiotics prescribed were third-generation cephalosporins, penicillins, and penicillin/ß-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the viral group, 216 of 269 (80.3%) received ≥1 antibiotic in the "Watch" category. CONCLUSIONS: Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial overprescription of antibiotics. A significant proportion of patients with a viral phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology could significantly improve antimicrobial stewardship.


Asunto(s)
Antibacterianos , Programas de Optimización del Uso de los Antimicrobianos , Niño , Humanos , Antibacterianos/uso terapéutico , Programas de Optimización del Uso de los Antimicrobianos/métodos , Prescripciones de Medicamentos , Europa (Continente) , Servicio de Urgencia en Hospital , Fiebre/diagnóstico , Fiebre/tratamiento farmacológico , Penicilinas/uso terapéutico
3.
Phys Rev Lett ; 131(22): 220202, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101359

RESUMEN

We present an invertible map between correlations in any bipartite Bell scenario and behaviors in a family of contextuality scenarios. The map takes local, quantum, and no-signaling correlations to noncontextual, quantum, and contextual behaviors, respectively. Consequently, we find that the membership problem of the set of quantum contextual behaviors is undecidable, the set cannot be fully realized via finite dimensional quantum systems and is not closed. Finally, we show that neither this set nor its closure is the limit of a sequence of computable supersets due to the result MIP^{*}=RE.

4.
Pediatr Res ; 93(3): 559-569, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35732822

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD patients from patients with other febrile conditions. Here, we bridged this microarray-based classifier to a clinically applicable quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay: the Kawasaki Disease Gene Expression Profiling (KiDs-GEP) classifier. METHODS: We designed and optimized a qRT-PCR assay and applied it to a subset of samples previously used for the classifier discovery to reweight the original classifier. RESULTS: The performance of the KiDs-GEP classifier was comparable to the original classifier with a cross-validated area under the ROC curve of 0.964 [95% CI: 0.924-1.00] vs 0.992 [95% CI: 0.978-1.00], respectively. Both classifiers demonstrated similar trends over various disease conditions, with the clearest distinction between individuals diagnosed with KD vs viral infections. CONCLUSION: We successfully bridged the microarray-based classifier into the KiDs-GEP classifier, a more rapid and more cost-efficient qRT-PCR assay, bringing a diagnostic test for KD closer to the hospital clinical laboratory. IMPACT: A diagnostic test is needed for Kawasaki disease and is currently not available. We describe the development of a One-Step multiplex qRT-PCR assay and the subsequent modification (i.e., bridging) of the microarray-based host response classifier previously described by Wright et al. The bridged KiDs-GEP classifier performs well in discriminating Kawasaki disease patients from febrile controls. This host response clinical test for Kawasaki disease can be adapted to the hospital clinical laboratory.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Preescolar , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Perfilación de la Expresión Génica , Fiebre , Curva ROC
5.
Clin Infect Dis ; 70(10): 2045-2053, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31504285

RESUMEN

BACKGROUND: Neisseria meningitidis (Nm) is a nasopharyngeal commensal carried by healthy individuals. However, invasive infections occurs in a minority of individuals, with devastating consequences. There is evidence that common polymorphisms are associated with invasive meningococcal disease (IMD), but the contributions of rare variants other than those in the complement system have not been determined. METHODS: We identified familial cases of IMD in the UK meningococcal disease study and the European Union Life-Threatening Infectious Disease Study. Candidate genetic variants were identified by whole-exome sequencing of 2 patients with familial IMD. Candidate variants were further validated by in vitro assays. RESULTS: Exomes of 2 siblings with IMD identified a novel heterozygous missense mutation in BPIFA1/SPLUNC1. Sequencing of 186 other nonfamilial cases identified another unrelated IMD patient with the same mutation. SPLUNC1 is an innate immune defense protein expressed in the nasopharyngeal epithelia; however, its role in invasive infections is unknown. In vitro assays demonstrated that recombinant SPLUNC1 protein inhibits biofilm formation by Nm, and impedes Nm adhesion and invasion of human airway cells. The dominant negative mutant recombinant SPLUNC1 (p.G22E) showed reduced antibiofilm activity, increased meningococcal adhesion, and increased invasion of cells, compared with wild-type SPLUNC1. CONCLUSIONS: A mutation in SPLUNC1 affecting mucosal attachment, biofilm formation, and invasion of mucosal epithelial cells is a new genetic cause of meningococcal disease.


Asunto(s)
Glicoproteínas/genética , Infecciones Meningocócicas/genética , Infecciones Meningocócicas/microbiología , Neisseria meningitidis , Fosfoproteínas/genética , Proteínas del Sistema Complemento , Células Epiteliales , Humanos , Mutación , Neisseria meningitidis/genética
6.
Nucleic Acids Res ; 46(13): 6823-6840, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29718466

RESUMEN

Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Alginatos/metabolismo , Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Genoma Bacteriano , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/metabolismo , ARN Pequeño no Traducido/metabolismo , Regulón , Proteínas Represoras/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
7.
Bioinformatics ; 33(6): 871-878, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28065902

RESUMEN

Motivation: We introduce PRINCESS, a privacy-preserving international collaboration framework for analyzing rare disease genetic data that are distributed across different continents. PRINCESS leverages Software Guard Extensions (SGX) and hardware for trustworthy computation. Unlike a traditional international collaboration model, where individual-level patient DNA are physically centralized at a single site, PRINCESS performs a secure and distributed computation over encrypted data, fulfilling institutional policies and regulations for protected health information. Results: To demonstrate PRINCESS' performance and feasibility, we conducted a family-based allelic association study for Kawasaki Disease, with data hosted in three different continents. The experimental results show that PRINCESS provides secure and accurate analyses much faster than alternative solutions, such as homomorphic encryption and garbled circuits (over 40 000× faster). Availability and Implementation: https://github.com/achenfengb/PRINCESS_opensource. Contact: shw070@ucsd.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Seguridad Computacional , Estudios de Asociación Genética/métodos , Privacidad , Enfermedades Raras/genética , Programas Informáticos , Genómica/métodos , Humanos , Síndrome Mucocutáneo Linfonodular/genética
8.
N Engl J Med ; 370(18): 1712-1723, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24785206

RESUMEN

BACKGROUND: Improved diagnostic tests for tuberculosis in children are needed. We hypothesized that transcriptional signatures of host blood could be used to distinguish tuberculosis from other diseases in African children who either were or were not infected with the human immunodeficiency virus (HIV). METHODS: The study population comprised prospective cohorts of children who were undergoing evaluation for suspected tuberculosis in South Africa (655 children), Malawi (701 children), and Kenya (1599 children). Patients were assigned to groups according to whether the diagnosis was culture-confirmed tuberculosis, culture-negative tuberculosis, diseases other than tuberculosis, or latent tuberculosis infection. Diagnostic signatures distinguishing tuberculosis from other diseases and from latent tuberculosis infection were identified from genomewide analysis of RNA expression in host blood. RESULTS: We identified a 51-transcript signature distinguishing tuberculosis from other diseases in the South African and Malawian children (the discovery cohort). In the Kenyan children (the validation cohort), a risk score based on the signature for tuberculosis and for diseases other than tuberculosis showed a sensitivity of 82.9% (95% confidence interval [CI], 68.6 to 94.3) and a specificity of 83.6% (95% CI, 74.6 to 92.7) for the diagnosis of culture-confirmed tuberculosis. Among patients with cultures negative for Mycobacterium tuberculosis who were treated for tuberculosis (those with highly probable, probable, or possible cases of tuberculosis), the estimated sensitivity was 62.5 to 82.3%, 42.1 to 80.8%, and 35.3 to 79.6%, respectively, for different estimates of actual tuberculosis in the groups. In comparison, the sensitivity of the Xpert MTB/RIF assay for molecular detection of M. tuberculosis DNA in cases of culture-confirmed tuberculosis was 54.3% (95% CI, 37.1 to 68.6), and the sensitivity in highly probable, probable, or possible cases was an estimated 25.0 to 35.7%, 5.3 to 13.3%, and 0%, respectively; the specificity of the assay was 100%. CONCLUSIONS: RNA expression signatures provided data that helped distinguish tuberculosis from other diseases in African children with and those without HIV infection. (Funded by the European Union Action for Diseases of Poverty Program and others).


Asunto(s)
Mycobacterium tuberculosis/genética , ARN Bacteriano/sangre , Transcriptoma , Tuberculosis/diagnóstico , África , Algoritmos , Técnicas Bacteriológicas , Niño , Preescolar , Diagnóstico Diferencial , Infecciones por VIH/complicaciones , Humanos , Lactante , Tuberculosis Latente/diagnóstico , Masculino , Mycobacterium tuberculosis/aislamiento & purificación , Análisis de Secuencia por Matrices de Oligonucleótidos , Riesgo , Sensibilidad y Especificidad , Tuberculosis/complicaciones , Tuberculosis/genética
9.
JAMA ; 316(8): 835-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27552617

RESUMEN

IMPORTANCE: Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. OBJECTIVE: To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. DESIGN, SETTING, AND PARTICIPANTS: Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. EXPOSURES: A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. MAIN OUTCOMES AND MEASURES: Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. RESULTS: The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17 months; 57% male), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial (sensitivity, 100% [95% CI, 100%-100%]) and 27 of 28 patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI, 89.3%-100%]). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial infection, although 94.9% (129/136) received antibiotic treatment. CONCLUSIONS AND RELEVANCE: This study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings.


Asunto(s)
Antígenos/sangre , Infecciones Bacterianas/diagnóstico , Proteínas del Citoesqueleto/sangre , Fiebre/microbiología , Fiebre/virología , ARN/sangre , Virosis/diagnóstico , Antibacterianos/administración & dosificación , Antígenos/genética , Área Bajo la Curva , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/genética , Biomarcadores/sangre , Preescolar , Coinfección/diagnóstico , Coinfección/microbiología , Coinfección/virología , Proteínas del Citoesqueleto/genética , Diagnóstico Diferencial , Femenino , Fiebre/sangre , Perfilación de la Expresión Génica , Marcadores Genéticos , Humanos , Lactante , Modelos Logísticos , Masculino , Estudios Prospectivos , ARN/análisis , ARN/genética , Riesgo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Virosis/complicaciones , Virosis/genética
10.
Hum Mol Genet ; 22(18): 3807-17, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23704328

RESUMEN

Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of 'age at first tooth' and 'number of teeth' using 5998 and 6609 individuals, respectively, from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2 446 724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of 15 independent loci, with 10 loci reaching genome-wide significance (P < 5 × 10(-8)) for 'age at first tooth' and 11 loci for 'number of teeth'. Together, these associations explain 6.06% of the variation in 'age of first tooth' and 4.76% of the variation in 'number of teeth'. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including an SNP in the protein-coding region of BMP4 (rs17563, P = 9.080 × 10(-17)). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development.


Asunto(s)
Estatura/genética , Cara/anatomía & histología , Sitios Genéticos , Erupción Dental/genética , Cromosomas Humanos , Dentición , Femenino , Finlandia , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Polimorfismo de Nucleótido Simple
11.
J Infect Dis ; 208(10): 1664-8, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23901082

RESUMEN

We compared the blood RNA transcriptome of children hospitalized with influenza A H1N1/09, respiratory syncytial virus (RSV) or bacterial infection, and healthy controls. Compared to controls, H1N1/09 patients showed increased expression of inflammatory pathway genes and reduced expression of adaptive immune pathway genes. This was validated on an independent cohort. The most significant function distinguishing H1N1/09 patients from controls was protein synthesis, with reduced gene expression. Reduced expression of protein synthesis genes also characterized the H1N1/09 expression profile compared to children with RSV and bacterial infection, suggesting that this is a key component of the pathophysiological response in children hospitalized with H1N1/09 infection.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/genética , Biosíntesis de Proteínas/genética , Adolescente , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Niño , Análisis por Conglomerados , Humanos , Gripe Humana/inmunología , Gripe Humana/metabolismo , Reproducibilidad de los Resultados , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano , Transducción de Señal
12.
PLoS Med ; 10(10): e1001538, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24167453

RESUMEN

BACKGROUND: A major impediment to tuberculosis control in Africa is the difficulty in diagnosing active tuberculosis (TB), particularly in the context of HIV infection. We hypothesized that a unique host blood RNA transcriptional signature would distinguish TB from other diseases (OD) in HIV-infected and -uninfected patients, and that this could be the basis of a simple diagnostic test. METHODS AND FINDINGS: Adult case-control cohorts were established in South Africa and Malawi of HIV-infected or -uninfected individuals consisting of 584 patients with either TB (confirmed by culture of Mycobacterium tuberculosis [M.TB] from sputum or tissue sample in a patient under investigation for TB), OD (i.e., TB was considered in the differential diagnosis but then excluded), or healthy individuals with latent TB infection (LTBI). Individuals were randomized into training (80%) and test (20%) cohorts. Blood transcriptional profiles were assessed and minimal sets of significantly differentially expressed transcripts distinguishing TB from LTBI and OD were identified in the training cohort. A 27 transcript signature distinguished TB from LTBI and a 44 transcript signature distinguished TB from OD. To evaluate our signatures, we used a novel computational method to calculate a disease risk score (DRS) for each patient. The classification based on this score was first evaluated in the test cohort, and then validated in an independent publically available dataset (GSE19491). In our test cohort, the DRS classified TB from LTBI (sensitivity 95%, 95% CI [87-100]; specificity 90%, 95% CI [80-97]) and TB from OD (sensitivity 93%, 95% CI [83-100]; specificity 88%, 95% CI [74-97]). In the independent validation cohort, TB patients were distinguished both from LTBI individuals (sensitivity 95%, 95% CI [85-100]; specificity 94%, 95% CI [84-100]) and OD patients (sensitivity 100%, 95% CI [100-100]; specificity 96%, 95% CI [93-100]). Limitations of our study include the use of only culture confirmed TB patients, and the potential that TB may have been misdiagnosed in a small proportion of OD patients despite the extensive clinical investigation used to assign each patient to their diagnostic group. CONCLUSIONS: In our study, blood transcriptional signatures distinguished TB from other conditions prevalent in HIV-infected and -uninfected African adults. Our DRS, based on these signatures, could be developed as a test for TB suitable for use in HIV endemic countries. Further evaluation of the performance of the signatures and DRS in prospective populations of patients with symptoms consistent with TB will be needed to define their clinical value under operational conditions. Please see later in the article for the Editors' Summary.


Asunto(s)
Infecciones por VIH/complicaciones , Mycobacterium tuberculosis/aislamiento & purificación , ARN Bacteriano/sangre , Tuberculosis/diagnóstico , Adulto , África , Estudios de Casos y Controles , Infecciones por VIH/microbiología , Humanos , Mycobacterium tuberculosis/genética , Sensibilidad y Especificidad , Tuberculosis/genética
13.
Hum Mol Genet ; 20(17): 3494-506, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21653640

RESUMEN

Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function. We bridge the gap between pathway and gene-oriented analyses of GWAS, by introducing a pathway-driven gene stability-selection methodology that identifies potential causal genes in the top-associated disease pathways that may be driving the pathway association signals. We analysed the WTCCC and the NARAC studies of ∼5000 and ∼2000 subjects, respectively. We examined 700 pathways comprising ∼8000 genes. Ranking pathways by significance revealed that the NARAC top-ranked ∼6% laid within the top 10% of WTCCC. Gene selection on those pathways identified 58 genes in WTCCC and 61 in NARAC; 21 of those were common (P(overlap)< 10(-21)), of which 16 were novel discoveries. Among the identified genes, we validated 10 known RA associations in WTCCC and 13 in NARAC, not discovered using single-SNP approaches on the same data. Gene ontology functional enrichment analysis on the identified genes showed significant over-representation of signalling activity (P< 10(-29)) in both studies. Our findings suggest a novel model of RA genetic predisposition, which involves cell-membrane receptors and genes in second messenger signalling systems, in addition to genes that regulate immune responses, which have been the focus of interest previously.


Asunto(s)
Artritis Reumatoide/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Arthritis Rheum ; 64(1): 306-15, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21905000

RESUMEN

OBJECTIVE: In Kawasaki disease (KD), a pediatric vasculitis of medium-sized arteries, the coronary arteries are most commonly affected. Angiopoietins and vascular endothelial growth factor (VEGF) play an important role in maintaining vascular homeostasis. Recently, we identified ANGPT1 and VEGFA as susceptibility loci for KD. This study was undertaken to fine-map these associations and to gain further insight into their role in this vasculitis of unknown etiology to further the search for improved diagnostic and therapeutic options. METHODS: A total of 292 single-nucleotide polymorphisms (SNPs) located in VEGF and ANGPT and their receptors were genotyped in 574 families, including 462 trios. For replication, 123 cases and 171 controls were genotyped. RESULTS: A significant association with KD susceptibility was observed with 5 SNPs in the ANGPT1 gene (most significantly associated SNP +265037 C>T; Pcombined=2.3×10(-7) ) and 2 SNPs in VEGFA (most significantly associated SNP rs3025039; Pcombined=2.5×10(-4) ). Both ANGPT1 +265037 C>T and VEGFA rs3025039 are located in 3' regulatory regions at putative transcription factor binding sites. We observed significantly down-regulated transcript levels of angiopoietin 1 (Ang-1) in patients with acute KD compared to patients with convalescent KD. In patients with acute KD, high serum protein levels of VEGF and Ang-2 were observed compared to patients with convalescent KD and to both controls with and controls without fever. Immunohistochemistry demonstrated VEGF and angiopoietin expression in the coronary artery wall in autopsy tissue. CONCLUSION: Our data support the hypothesis that dysregulation of VEGF and angiopoietins contributes to the disruption of vascular homeostasis in KD.


Asunto(s)
Angiopoyetina 1/genética , Predisposición Genética a la Enfermedad , Síndrome Mucocutáneo Linfonodular/genética , Polimorfismo de Nucleótido Simple , Factor A de Crecimiento Endotelial Vascular/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Preescolar , Convalecencia , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Femenino , Homeostasis , Humanos , Lactante , Masculino , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/metabolismo , Receptor TIE-2 , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Crit Care ; 17(2): R68, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23577792

RESUMEN

INTRODUCTION: The aim of this study was to derive a novel prognostic score for mortality in paediatric meningococcal sepsis (MS) based on readily available laboratory markers. METHODS: A multicentre retrospective cohort study for the consortium set and a single centre retrospective study for replication set. The consortium set were 1,073 children (age 1 week to 17.9 years) referred over a 15-year period (1996 to 2011), who had an admission diagnosis of MS, referred to paediatric intensive care units (PICUs) in six different European centres. The consortium set was split into a development set and validation set to derive the score. The replication set were 134 children with MS (age 2 weeks to 16 years) referred over a 4-year period (2007 to 2011) to PICUs via the Children's Acute Transport Service (CATS), London. RESULTS: A total of 85/1,073 (7.9%) children in the consortium set died. A total of 16/134 (11.9%) children in the replication set died. Children dying in the consortium set had significantly lower base excess, C-reactive protein (CRP), platelet and white cell count, more deranged coagulation and higher lactate than survivors. Paediatric risk of mortality (PRISM) score, Glasgow meningococcal septicaemia prognosis score (GMSPS) and Rotterdam score were also higher. Using the consortium set, a new scoring system using base excess and platelet count at presentation, termed the BEP score, was mathematically developed and validated. BEP predicted mortality with high sensitivity and specificity scores (area under the curve (AUC) in the validation set=0.86 and in the replication set=0.96). In the validation set, BEP score performance (AUC=0.86, confidence interval (CI): 0.80 to 0.91) was better than GMSPS (AUC=0.77, CI: 0.68, 0.85), similar to Rotterdam (AUC=0.87, CI: 0.81 to 0.93) and not as good as PRISM (AUC=0.93, CI: 0.85 to 0.97). CONCLUSIONS: The BEP score, relying on only two variables that are quickly and objectively measurable and readily available at presentation, is highly sensitive and specific in predicting death from MS in childhood.


Asunto(s)
Infecciones Meningocócicas/sangre , Infecciones Meningocócicas/mortalidad , Sepsis/sangre , Sepsis/mortalidad , Índice de Severidad de la Enfermedad , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Infecciones Meningocócicas/diagnóstico , Mortalidad/tendencias , Recuento de Plaquetas/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Estudios Retrospectivos , Sepsis/diagnóstico
16.
J Infect ; 87(6): 538-550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863321

RESUMEN

OBJECTIVES: The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load are different from those controlling lower respiratory tract viral load and disease severity. Understanding such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to identify mechanisms controlling URT viral load. METHODS: COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were performed and gene expression analysed in relation to paired URT viral load samples collected within 15 days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional data using computational differential estimation. Weighted correlation network analysis (adjusted for cell proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral load, quantified as standard deviations (z-scores) from an expected trajectory over time. RESULTS: Eighty-two subjects (50% female, median age 54 years (range 3-73)) with COVID-19 were recruited. Paired URT viral load samples were available for 16 blood transcriptome samples, and 17 respiratory epithelial transcriptome samples. Natural Killer (NK) cells were the only blood cell type significantly correlated with URT viral load z-scores (r = -0.62, P = 0.010). Twenty-four blood gene expression modules were significantly correlated with URT viral load z-score, the most significant being a module of genes connected around IFNA14 (Interferon Alpha-14) expression (r = -0.60, P = 1e-10). In fixed repertoire analysis, prostanoid-related gene expression was significantly associated with higher viral load. In nasal epithelium, only GNLY (granulysin) gene expression showed significant negative correlation with viral load. CONCLUSIONS: Correlations between the transcriptional host response and inter-individual variations in SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly favouring or constraining viral replication. Existing evidence corroborates many of these mechanisms, including likely roles for NK cells, granulysin, prostanoids and interferon alpha-14. Inhibition of prostanoid production and administration of interferon alpha-14 may be attractive transmission-blocking interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Masculino , SARS-CoV-2/genética , Carga Viral , Transcriptoma , Mucosa Nasal , Prostaglandinas , Interferón-alfa
17.
iScience ; 26(8): 107257, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520696

RESUMEN

Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection.

18.
Med ; 4(9): 635-654.e5, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37597512

RESUMEN

BACKGROUND: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING: European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.


Asunto(s)
Benchmarking , Investigación Biomédica , Niño , Humanos , Diagnóstico Diferencial , Motivos de Nucleótidos , Fiebre/diagnóstico , Fiebre/genética , ARN
19.
Lancet Digit Health ; 5(11): e774-e785, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37890901

RESUMEN

BACKGROUND: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS: In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS: 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. INTERPRETATION: This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics. FUNDING: European Union's Horizon 2020 research and innovation programme, the European Union's Seventh Framework Programme (EUCLIDS), Imperial Biomedical Research Centre of the National Institute for Health Research, the Wellcome Trust and Medical Research Foundation, Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Grupos de Refeencia Competitiva, Swiss State Secretariat for Education, Research and Innovation.


Asunto(s)
Infecciones Bacterianas , Virosis , Humanos , Niño , Proteómica , Infecciones Bacterianas/diagnóstico , Biomarcadores/metabolismo , Virosis/diagnóstico , Antibacterianos
20.
J Med Genet ; 48(7): 467-72, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571869

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a self limited vasculitis in which host genetics plays a prominent role. To further the understanding of the role of host genetics in KD, a three-stage genetic study was conducted that began with a family linkage study and ultimately involved more than 3000 individuals to identify new genetic contributions to KD susceptibility. METHODS AND RESULTS: A 26-family linkage study followed by fine mapping was performed in a cohort of 1284 KD subjects and their family members (total 3248 individuals). Suggestive evidence of disease linkage (logarithm of odds (LOD) ≥3.0, p<1.00×10(-4)) was found for five genomic locations (Chr 3q, 4q, 10p, 13q, 21q). Two of these loci (Chr 4q and Chr 13q) overlapped with validated findings from a recent KD genome-wide association study. Fine mapping analysis revealed three single nucleotide polymorphisms (SNPs) in ATP-binding cassette, subfamily C, member 4 (ABCC4) underlying the Chr 13q linkage peak showing evidence of association to KD (lowest p=8.82×10(-5); combined OR 2.00, 95% CI 1.41 to 2.83). ABCC4 is a multifunctional cyclic nucleotide transporter that stimulates the migratory capacity of dendritic cells. It is also a mediator of prostaglandin efflux from human cells and is inhibited by non-steroidal anti-inflammatory medications such as aspirin. CONCLUSION: These genetic data suggest that ABCC4 could play a fundamental role in KD pathogenesis with effects on immune activation and vascular response to injury.


Asunto(s)
Alelos , Estudio de Asociación del Genoma Completo , Síndrome Mucocutáneo Linfonodular/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA