Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805184

RESUMEN

Staphylococcus aureus (S. aureus) persists within mammary epithelial cells for an extended duration, exploiting the host metabolic resources to facilitate replication. This study revealed a mechanism by which intracellular S. aureus reprograms host metabolism, with PFKFB3 playing a crucial role in this process. Mechanistically, S. aureus induced mitochondrial damage, leading to increased levels of mitochondrial reactive oxygen species (mROS) and dysfunction in electron transport chain (ETC). Moreover, S. aureus shifted the balance of mitochondrial dynamics from fusion to fission, subsequently activating PINK1-PRKN-dependent mitophagy, causing loss of the sirtuin 3 (SIRT3) to stabilize hypoxic inducible factor 1α (HIF1α), and shifting the host metabolism toward enhanced glycolysis. The inhibition of PFKFB3 reversed the mitochondrial damage and degradation of SIRT3 induced by S. aureus. Overall, our findings elucidate the mechanism by which S. aureus reprograms host metabolism and offer insights into the treatment of S. aureus infection.

2.
Int Immunopharmacol ; 130: 111638, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38373387

RESUMEN

L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.


Asunto(s)
Arginina , Mastitis , MicroARNs , Infecciones Estreptocócicas , Animales , Femenino , Humanos , Ratones , Arginina/metabolismo , Inflamación/metabolismo , MicroARNs/genética , Infecciones Estreptocócicas/metabolismo , Streptococcus/fisiología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Mastitis/inmunología , Mastitis/metabolismo
3.
PeerJ ; 10: e12728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846884

RESUMEN

Background: Pancreatic ductal adenocarcinoma (PDAC) has the worst five-year overall survival rate among all cancer types. Acquired chemoresistance is considered one of the main reasons for this dismal prognosis, and the mechanism of chemoresistance is unknown. Methods: We previously identified a subpopulation of chemoresistant CD44high-expressing PDAC cells. Subsequently, we selected the candidate gene, gamma-aminobutyric acid receptor subunit Pi (GABRP), from three Gene Expression Omnibus datasets as the potential CD44 downstream target mediating the gemcitabine resistance. Loss and gain of function such as stable knockdown of CD44 by small hairpin (sh) RNA-mediated silencing technique and overexpression (O/E) of CD44s had been studied for comparing the gemcitabine resistance among CD44high-expressing cells, shCD44 cells, CD44low-expressing cells and O/E CD44s expressing cells. Functional assays including cell viability, colony formation, invasion, quantitative PCR and western blotting techniques were performed to validate the roles of CD44 and GABRP playing in mediating the gemcitabine resistance in pancreatic cancer cells. Results: CD44s depletion significantly reduced gemcitabine resistance in shCD44 single clone cells compared to CD44high-expressing cells. Knockdown of CD44 cells formed less colonies, became less invasive and remarkably decreased the mRNA level of GABRP. While overexpression of CD44s had the opposite effect on gemcitabine resistance, colony formation and invasive property. Of note, long term gemcitabine resistant pancreatic cancer cells detected increased expression of CD44 and GABRP. Clinically, GABRP expression was significantly upregulated in the tissues of patients with pancreatic cancer compared to the normal samples, and the overall survival rate of patients with low GABRP expression was longer. CD44 and GABRP co-expression was positively correlated in 178 pancreatic cancer patients. Conclusion: Our findings suggest that GABRP may serve as a CD44s downstream target to diminish gemcitabine resistance in pancreatic cancer, and both CD44s and GABRP molecules have the potential to become prognostic biomarkers for PDAC patients with gemcitabine resistance.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Receptores de GABA/metabolismo , Desoxicitidina/farmacología , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , ARN Interferente Pequeño/genética , Receptores de Hialuranos/genética , Receptores de GABA-A/metabolismo , Neoplasias Pancreáticas
4.
Front Immunol ; 13: 927215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148229

RESUMEN

Neutrophil extracellular traps (NETs) are produced by neutrophil activation and usually have both anti-infective and pro-damage effects. Streptococcus uberis (S. uberis), one of the common causative organisms of mastitis, can lead to the production of NETs. Taurine, a free amino acid abundant in the organism, has been shown to have immunomodulatory effects. In this study, we investigated the molecular mechanisms of S. uberis-induced NETs formation and the regulatory role of taurine. The results showed that NETs had a disruptive effect on mammary epithelial cells and barriers, but do not significantly inhibit the proliferation of S. uberis. S. uberis induced NADPH oxidase-dependent NETs. TLR2-mediated activation of the MAPK signaling pathway was involved in this process. Taurine could inhibit the activation of MAPK signaling pathway and NADPH oxidase by modulating the activity of TAK1, thereby inhibiting the production of ROS and NETs. The effects of taurine on NADPH oxidase and NETs in S. uberis infection were also demonstrated in vivo. These results suggest that taurine can protect mammary epithelial cells and barriers from damage by reducing S. uberis-induced NETs. These data provide new insights and strategies for the prevention and control of mastitis.


Asunto(s)
Trampas Extracelulares , Mastitis , Aminoácidos , Trampas Extracelulares/metabolismo , Femenino , Humanos , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Streptococcus , Taurina/farmacología , Receptor Toll-Like 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA