Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(14): 2959-2976.e22, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37339633

RESUMEN

Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.


Asunto(s)
Genoma , Serpientes , Animales , Serpientes/genética , Adaptación Fisiológica , Aclimatación , Evolución Molecular , Filogenia , Evolución Biológica
3.
Nature ; 619(7968): 112-121, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316654

RESUMEN

Human genomics is witnessing an ongoing paradigm shift from a single reference sequence to a pangenome form, but populations of Asian ancestry are underrepresented. Here we present data from the first phase of the Chinese Pangenome Consortium, including a collection of 116 high-quality and haplotype-phased de novo assemblies based on 58 core samples representing 36 minority Chinese ethnic groups. With an average 30.65× high-fidelity long-read sequence coverage, an average contiguity N50 of more than 35.63 megabases and an average total size of 3.01 gigabases, the CPC core assemblies add 189 million base pairs of euchromatic polymorphic sequences and 1,367 protein-coding gene duplications to GRCh38. We identified 15.9 million small variants and 78,072 structural variants, of which 5.9 million small variants and 34,223 structural variants were not reported in a recently released pangenome reference1. The Chinese Pangenome Consortium data demonstrate a remarkable increase in the discovery of novel and missing sequences when individuals are included from underrepresented minority ethnic groups. The missing reference sequences were enriched with archaic-derived alleles and genes that confer essential functions related to keratinization, response to ultraviolet radiation, DNA repair, immunological responses and lifespan, implying great potential for shedding new light on human evolution and recovering missing heritability in complex disease mapping.


Asunto(s)
Pueblos del Este de Asia , Etnicidad , Variación Genética , Genoma Humano , Genética Humana , Grupos Minoritarios , Humanos , Pueblos del Este de Asia/clasificación , Pueblos del Este de Asia/genética , Etnicidad/genética , Genoma Humano/genética , Análisis de Secuencia de ADN , Rayos Ultravioleta , Genética Humana/normas , Minorías Étnicas y Raciales , Estándares de Referencia , Haplotipos/genética , Eucromatina/genética , Alelos , Reparación del ADN/genética , Queratinas/genética , Queratinas/metabolismo , Longevidad/genética , Inmunidad/genética
4.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38175672

RESUMEN

Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/genética , Evolución Molecular , Primates/genética , Encéfalo
5.
Nature ; 574(7780): 658-662, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31666724

RESUMEN

The engineering of biological molecules is a key concept in the design of highly functional, sophisticated soft materials. Biomolecules exhibit a wide range of functions and structures, including chemical recognition (of enzyme substrates or adhesive ligands1, for instance), exquisite nanostructures (composed of peptides2, proteins3 or nucleic acids4), and unusual mechanical properties (such as silk-like strength3, stiffness5, viscoelasticity6 and resiliency7). Here we combine the computational design of physical (noncovalent) interactions with pathway-dependent, hierarchical 'click' covalent assembly to produce hybrid synthetic peptide-based polymers. The nanometre-scale monomeric units of these polymers are homotetrameric, α-helical bundles of low-molecular-weight peptides. These bundled monomers, or 'bundlemers', can be designed to provide complete control of the stability, size and spatial display of chemical functionalities. The protein-like structure of the bundle allows precise positioning of covalent linkages between the ends of distinct bundlemers, resulting in polymers with interesting and controllable physical characteristics, such as rigid rods, semiflexible or kinked chains, and thermally responsive hydrogel networks. Chain stiffness can be controlled by varying only the linkage. Furthermore, by controlling the amino acid sequence along the bundlemer periphery, we use specific amino acid side chains, including non-natural 'click' chemistry functionalities, to conjugate moieties into a desired pattern, enabling the creation of a wide variety of hybrid nanomaterials.


Asunto(s)
Nanoestructuras/química , Péptidos/química , Polímeros/química , Secuencia de Aminoácidos , Diseño de Fármacos , Proteínas/química
6.
Proc Natl Acad Sci U S A ; 119(40): e2123030119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161902

RESUMEN

Lorises are a group of globally threatened strepsirrhine primates that exhibit many unusual physiological and behavioral features, including a low metabolic rate, slow movement, and hibernation. Here, we assembled a chromosome-level genome sequence of the pygmy loris (Xanthonycticebus pygmaeus) and resequenced whole genomes from 50 pygmy lorises and 6 Bengal slow lorises (Nycticebus bengalensis). We found that many gene families involved in detoxification have been specifically expanded in the pygmy loris, including the GSTA gene family, with many newly derived copies functioning specifically in the liver. We detected many genes displaying evolutionary convergence between pygmy loris and koala, including PITRM1. Significant decreases in PITRM1 enzymatic activity in these two species may have contributed to their characteristic low rate of metabolism. We also detected many evolutionarily convergent genes and positively selected genes in the pygmy loris that are involved in muscle development. Functional assays demonstrated the decreased ability of one positively selected gene, MYOF, to up-regulate the fast-type muscle fiber, consistent with the lower proportion of fast-twitch muscle fibers in the pygmy loris. The protein product of another positively selected gene in the pygmy loris, PER2, exhibited weaker binding to the key circadian core protein CRY, a finding that may be related to this species' unusual circadian rhythm. Finally, population genomics analysis revealed that these two extant loris species, which coexist in the same habitat, have exhibited an inverse relationship in terms of their demography over the past 1 million years, implying strong interspecies competition after speciation.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Lorisidae , Adaptación Biológica/genética , Animales , Demografía , Hibernación , Lorisidae/genética , Metagenómica , Metaloendopeptidasas/genética
7.
BMC Genomics ; 25(1): 430, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693501

RESUMEN

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Asunto(s)
Pollos , Genoma , Anotación de Secuencia Molecular , Animales , Pollos/genética , Composición de Base , Telómero/genética , Cromosomas/genética , Genómica/métodos
8.
BMC Genomics ; 25(1): 428, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689225

RESUMEN

BACKGROUND: Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS: We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION: We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Animales , Pollos/genética , Genoma , Mutación INDEL , Cruzamiento , Fenotipo , Genómica/métodos
9.
Mol Biol Evol ; 40(8)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37494289

RESUMEN

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Asunto(s)
Encéfalo , Primates , Ratones , Humanos , Animales , Primates/genética , Encéfalo/metabolismo , Evolución Molecular
10.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625089

RESUMEN

Determining the functional consequences of karyotypic changes is invariably challenging because evolution tends to obscure many of its own footprints, such as accumulated mutations, recombination events, and demographic perturbations. Here, we describe the assembly of a chromosome-level reference genome of the gayal (Bos frontalis) thereby revealing the structure, at base-pair-level resolution, of a telo/acrocentric-to-telo/acrocentric Robertsonian translocation (2;28) (T/A-to-T/A rob[2;28]). The absence of any reduction in the recombination rate or genetic introgression within the fusion region of gayal served to challenge the long-standing view of a role for fusion-induced meiotic dysfunction in speciation. The disproportionate increase noted in the distant interactions across pro-chr2 and pro-chr28, and the change in open-chromatin accessibility following rob(2;28), may, however, have led to the various gene expression irregularities observed in the gayal. Indeed, we found that many muscle-related genes, located synthetically on pro-chr2 and pro-chr28, exhibited significant changes in expression. This, combined with genome-scale structural variants and expression alterations in genes involved in myofibril composition, may have driven the rapid sarcomere adaptation of gayal to its rugged mountain habitat. Our findings not only suggest that large-scale chromosomal changes can lead to alterations in genome-level expression, thereby promoting both adaptation and speciation, but also illuminate novel avenues for studying the relationship between karyotype evolution and speciation.


Asunto(s)
Cromatina , Genoma , Animales , Bovinos
11.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37134013

RESUMEN

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca nemestrina , VIH-1/genética , Genómica , Virus de la Inmunodeficiencia de los Simios/genética
12.
J Virol ; 97(4): e0188922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022174

RESUMEN

African swine fever (ASF) is a highly infectious disease caused by the African swine fever virus (ASFV) in swine. It is characterized by the death of cells in infected tissues. However, the molecular mechanism of ASFV-induced cell death in porcine alveolar macrophages (PAMs) remains largely unknown. In this study, transcriptome sequencing of ASFV-infected PAMs found that ASFV activated the JAK2-STAT3 pathway in the early stages and apoptosis in the late stages of infection. Meanwhile, the JAK2-STAT3 pathway was confirmed to be essential for ASFV replication. AG490 and andrographolide (AND) inhibited the JAK2-STAT3 pathway, promoted ASFV-induced apoptosis, and exerted antiviral effects. Additionally, CD2v promoted STAT3 transcription and phosphorylation as well as translocation into the nucleus. CD2v is the main envelope glycoprotein of the ASFV, and further investigations showed that CD2v deletion downregulates the JAK2-STAT3 pathway and promotes apoptosis to inhibit ASFV replication. Furthermore, we discovered that CD2v interacts with CSF2RA, which is a hematopoietic receptor superfamily member in myeloid cells and a key receptor protein that activates receptor-associated JAK and STAT proteins. In this study, CSF2RA small interfering RNA (siRNA) downregulated the JAK2-STAT3 pathway and promoted apoptosis to inhibit ASFV replication. Taken together, ASFV replication requires the JAK2-STAT3 pathway, while CD2v interacts with CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. These results provide a theoretical basis for the escape mechanism and pathogenesis of ASFV. IMPORTANCE African swine fever is a hemorrhagic disease caused by the African swine fever virus (ASFV), which infects pigs of different breeds and ages, with a fatality rate of up to 100%. It is one of the key diseases affecting the global livestock industry. Currently, no commercial vaccines or antiviral drugs are available. Here, we show that ASFV replicates via the JAK2-STAT3 pathway. More specifically, ASFV CD2v interacts with CSF2RA to activate the JAK2-STAT3 pathway and inhibit apoptosis, thereby maintaining the survival of infected cells and promoting viral replication. This study revealed an important implication of the JAK2-STAT3 pathway in ASFV infection and identified a novel mechanism by which CD2v has evolved to interact with CSF2RA and maintain JAK2-STAT3 pathway activation to inhibit apoptosis, thus elucidating new information regarding the signal reprogramming of host cells by ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Proteínas del Envoltorio Viral , Replicación Viral , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Apoptosis/genética , Porcinos , Replicación Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Interacciones Microbiota-Huesped , Regulación hacia Abajo
13.
Nitric Oxide ; 150: 18-26, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971520

RESUMEN

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.

14.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570774

RESUMEN

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Porcinos , Animales , Coronavirus/genética , Quercetina/farmacología , Quercetina/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Enfermedades de los Porcinos/tratamiento farmacológico
15.
Biol Pharm Bull ; 47(7): 1248-1254, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38866477

RESUMEN

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.


Asunto(s)
Catequina , Etanol , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Etanol/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , FN-kappa B/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
Altern Ther Health Med ; 30(2): 171-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37856812

RESUMEN

Tumor necrosis factor alpha-induced protein-3, also called A20, is a zinc-finger protein that participates in various inflammatory responses; however, the putative relationship between A20 and hepatic fibrosis remains unelucidated. Therefore, we investigated the role and mechanism of action of A20 in activating hepatic stellate cells (HSC) during the progression of hepatic fibrosis. Cell counting kit-8 (CCK8), colony growth, transwell assays, cell cycle analysis, and apoptosis assays were performed to explore the effect of A20 on cell function in vitro. An interspecies intravenous injection of the adeno-associated virus was used to assess the in vivo role of A20. The regulation of A20 on p65 was detected using mass spectrometry and immunoprecipitation. Our findings revealed that A20 was highly expressed in the liver tissues of patients with hepatic fibrosis and that the expression level of A20 in the liver tissue was closely correlated with the stage of liver fibrosis. In the LX-2 cell line, the downregulation of A20 upregulated the expression of fibrosis-related proteins and increased the expression of inflammatory factors, indicating the activation of HSC and vice versa. In addition, overexpression of A20 in mice reduced the degree of liver fibrosis in thioacetamide model mice. Finally, co-immunoprecipitation demonstrated that A20 could interact with p65. Hence, A20 inhibits HSC activation by binding to p65.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Transducción de Señal , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología
17.
J Med Internet Res ; 26: e49848, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728685

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases and is associated with a high risk of in-hospital mortality. However, the current deep learning models for in-hospital mortality prediction lack interpretability. OBJECTIVE: This study aims to establish an explainable deep learning model to provide individualized in-hospital mortality prediction and risk factor assessment for patients with AMI. METHODS: In this retrospective multicenter study, we used data for consecutive patients hospitalized with AMI from the Chongqing University Central Hospital between July 2016 and December 2022 and the Electronic Intensive Care Unit Collaborative Research Database. These patients were randomly divided into training (7668/10,955, 70%) and internal test (3287/10,955, 30%) data sets. In addition, data of patients with AMI from the Medical Information Mart for Intensive Care database were used for external validation. Deep learning models were used to predict in-hospital mortality in patients with AMI, and they were compared with linear and tree-based models. The Shapley Additive Explanations method was used to explain the model with the highest area under the receiver operating characteristic curve in both the internal test and external validation data sets to quantify and visualize the features that drive predictions. RESULTS: A total of 10,955 patients with AMI who were admitted to Chongqing University Central Hospital or included in the Electronic Intensive Care Unit Collaborative Research Database were randomly divided into a training data set of 7668 (70%) patients and an internal test data set of 3287 (30%) patients. A total of 9355 patients from the Medical Information Mart for Intensive Care database were included for independent external validation. In-hospital mortality occurred in 8.74% (670/7668), 8.73% (287/3287), and 9.12% (853/9355) of the patients in the training, internal test, and external validation cohorts, respectively. The Self-Attention and Intersample Attention Transformer model performed best in both the internal test data set and the external validation data set among the 9 prediction models, with the highest area under the receiver operating characteristic curve of 0.86 (95% CI 0.84-0.88) and 0.85 (95% CI 0.84-0.87), respectively. Older age, high heart rate, and low body temperature were the 3 most important predictors of increased mortality, according to the explanations of the Self-Attention and Intersample Attention Transformer model. CONCLUSIONS: The explainable deep learning model that we developed could provide estimates of mortality and visual contribution of the features to the prediction for a patient with AMI. The explanations suggested that older age, unstable vital signs, and metabolic disorders may increase the risk of mortality in patients with AMI.


Asunto(s)
Aprendizaje Profundo , Mortalidad Hospitalaria , Infarto del Miocardio , Humanos , Infarto del Miocardio/mortalidad , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Algoritmos , Factores de Riesgo , Curva ROC
18.
BMC Biol ; 21(1): 64, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37069598

RESUMEN

BACKGROUND: Among six extant tiger subspecies, the South China tiger (Panthera tigris amoyensis) once was widely distributed but is now the rarest one and extinct in the wild. All living South China tigers are descendants of only two male and four female wild-caught tigers and they survive solely in zoos after 60 years of effective conservation efforts. Inbreeding depression and hybridization with other tiger subspecies were believed to have occurred within the small, captive South China tiger population. It is therefore urgently needed to examine the genomic landscape of existing genetic variation among the South China tigers. RESULTS: In this study, we assembled a high-quality chromosome-level genome using long-read sequences and re-sequenced 29 high-depth genomes of the South China tigers. By combining and comparing our data with the other 40 genomes of six tiger subspecies, we identified two significantly differentiated genomic lineages among the South China tigers, which harbored some rare genetic variants introgressed from other tiger subspecies and thus maintained a moderate genetic diversity. We noticed that the South China tiger had higher FROH values for longer runs of homozygosity (ROH > 1 Mb), an indication of recent inbreeding/founder events. We also observed that the South China tiger had the least frequent homozygous genotypes of both high- and moderate-impact deleterious mutations, and lower mutation loads than both Amur and Sumatran tigers. Altogether, our analyses indicated an effective genetic purging of deleterious mutations in homozygous states from the South China tiger, following its population contraction with a controlled increase in inbreeding based on its pedigree records. CONCLUSIONS: The identification of two unique founder/genomic lineages coupled with active genetic purging of deleterious mutations in homozygous states and the genomic resources generated in our study pave the way for a genomics-informed conservation, following the real-time monitoring and rational exchange of reproductive South China tigers among zoos.


Asunto(s)
Tigres , Animales , Femenino , Masculino , Tigres/genética , Metagenómica , Genoma , Genómica , China , Conservación de los Recursos Naturales
19.
Angew Chem Int Ed Engl ; 63(30): e202405765, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721653

RESUMEN

In this study, peptide-based self-assembled nanosheets with a thickness of approximately 1 nm were prepared using a hierarchical covalent physical fabrication strategy. The covalent alternating polymerization of helical peptide E3 with an azobenzene (AZO) structure yielded copolymers CoP(E3-AZO), which physically self-assembled into ultrathin nanosheets in an unanticipated two-dimensional horizontal monolayer arrangement. This special monolayer arrangement enabled the thickness of the nanosheets to be equal to the cross-sectional diameter of a single linear copolymer, which is a rare phenomenon. Molecular dynamics simulations suggested that the synergistic effect of multiple molecular interactions drives the self-assembly of CoP(E3-AZO) into nanosheets and that various methods, including phototreatment, pH adjustment, the addition of additives, and introduction of cosolvents, can alter the molecular interactions and modulate the self-assembly of CoP(E3-AZO), yielding diverse nanostructures. Remarkably, the ultrathin nanosheets selectively inhibited cancer cells at certain concentrations.


Asunto(s)
Nanoestructuras , Péptidos , Nanoestructuras/química , Péptidos/química , Humanos , Simulación de Dinámica Molecular , Compuestos Azo/química , Antineoplásicos/farmacología , Antineoplásicos/química
20.
J Am Chem Soc ; 145(44): 24108-24115, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37788442

RESUMEN

Protocells have garnered considerable attention from cell biologists, materials scientists, and synthetic biologists. Phase-separating coacervate microdroplets have emerged as a promising cytomimetic model because they can internalize and concentrate components from dilute surrounding environments. However, the membrane-free nature of such coacervates leads to coalescence into a bulk phase, a phenomenon that is not representative of the cells they are designed to mimic. Herein, we develop a membranized peptide coacervate (PC) with oppositely charged oligopeptides as the molecularly crowded cytosol and a metal-phenolic network (MPN) coating as the membrane. The hybrid protocell efficiently internalizes various bioactive macromolecules (e.g., bovine serum albumin and immunoglobulin G) (>90%) while also resisting radicals due to the semipermeable cytoprotective membrane. Notably, the resultant PC@MPNs are capable of anabolic cascade reactions and remain in discrete protocellular populations without coalescence. Finally, we demonstrate that the MPN protocell membrane can be postfunctionalized with various functional molecules (e.g., folic acid and fluorescence dye) to more closely resemble actual cells with complex membranes, such as recognition molecules, which allows for drug delivery. This membrane-bound cytosolic protocell structure paves the way for innovative synthetic cells with structural and functional complexity.


Asunto(s)
Células Artificiales , Células Artificiales/química , Péptidos , Albúmina Sérica Bovina/química , Sustancias Macromoleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA