Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 489, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825671

RESUMEN

BACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.


Asunto(s)
Frutas , Ligustrum , Metaboloma , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/química , Ligustrum/genética , Ligustrum/metabolismo , Ligustrum/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928085

RESUMEN

An approach based on the heat stress and microbial stress model of the medicinal plant Sparganium stoloniferum was proposed to elucidate the regulation and mechanism of bioactive phenol accumulation. This method integrates LC-MS/MS analysis, 16S rRNA sequencing, RT-qPCR, and molecular assays to investigate the regulation of phenolic metabolite biosynthesis in S. stoloniferum rhizome (SL) under stress. Previous research has shown that the metabolites and genes involved in phenol biosynthesis correlate to the upregulation of genes involved in plant-pathogen interactions. High-temperature and the presence of Pseudomonas bacteria were observed alongside SL growth. Under conditions of heat stress or Pseudomonas bacteria stress, both the metabolites and genes involved in phenol biosynthesis were upregulated. The regulation of phenol content and phenol biosynthesis gene expression suggests that phenol-based chemical defense of SL is stimulated under stress. Furthermore, the rapid accumulation of phenolic substances relied on the consumption of amino acids. Three defensive proteins, namely Ss4CL, SsC4H, and SsF3'5'H, were identified and verified to elucidate phenol biosynthesis in SL. Overall, this study enhances our understanding of the phenol-based chemical defense of SL, indicating that bioactive phenol substances result from SL's responses to the environment and providing new insights for growing the high-phenol-content medicinal herb SL.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Plantas Medicinales , Plantas Medicinales/metabolismo , Fenoles/metabolismo , Fenol/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rizoma/microbiología , Rizoma/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Espectrometría de Masas en Tándem , ARN Ribosómico 16S/genética
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 62-69, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403339

RESUMEN

The volatile oils are the effective components of Agastache rugosa, which are stored in the glandular scale. The leaves of pulegone-type A. rugosa were used as materials to observe the leaf morphology of A. rugosa at different growth stages, and the components of volatile oils in gland scales were detected by GC-MS. At the same time, qRT-PCR was used to determine the relative expression of key enzyme genes in the biosynthesis pathway of monoterpenes in volatile oils. The results showed that the density of A. rugosa glandular scale decreased first and then tended to be stable. With the growth of leaves, the relative content of pulegone decreased from 79.26% to 3.94%(89.97%-41.44%), while that of isomenthone increased from 2.43% to 77.87%(0.74%-51.01%), and the changes of other components were relatively insignificant. The correlation analysis between the relative content of monoterpenes and the relative expression levels of their key enzyme genes showed that there was a significant correlation between the relative content of menthone and isomenthone and the relative expression levels of pulegone reductase(PR)(r>0.6, P<0.01). To sum up, this study revealed the accumulation rules of the main components of the contents of the glandular scale of A. rugosa and the expression rules of the key enzyme genes for biosynthesis, which provided a scientific basis and data support for determining the appropriate harvesting period and quality control of the medicinal herbs. This study also initially revealed the biosynthesis mechanism of the monoterpenes mainly composed of pulegone and isomenthone in A. rugosa, laying a foundation for further research on the molecular mechanism of synthesis and accumulation of monoterpenes in A. rugosa.


Asunto(s)
Agastache , Monoterpenos Ciclohexánicos , Aceites Volátiles , Aceites Volátiles/análisis , Agastache/metabolismo , Monoterpenos/metabolismo
4.
J Cell Mol Med ; 27(11): 1565-1579, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37210603

RESUMEN

Staphylococcus aureus (S. aureus), one of the most prevalent bacteria found in atopic dermatitis lesions, can induce ongoing infections and inflammation by downregulating the expression of host defence peptides in the skin. In addition, the emergence of the 'superbug' Methicillin-resistant S. aureus (MRSA) has made the treatment of these infections more challenging. Antimicrobial peptides (AMPs), due to their potent antimicrobial activity, limited evidence of resistance development, and potential immunomodulatory effects, have gained increasing attention as potential therapeutic agents for atopic dermatitis. In this study, we report a novel AMP, brevinin-1E-OG9, isolated from the skin secretions of Odorrana grahami, which shows potent antibacterial activity, especially against S. aureus. Based on the characteristics of the 'Rana Box', we designed a set of brevinin-1E-OG9 analogues to explore its structure-activity relationship. Brevinin-1E-OG9c-De-NH2 exhibited the most potent antimicrobial efficacy in both in vitro and ex vivo studies and attenuated inflammatory responses induced by lipoteichoic acid and heat-killed microbes. As a result, brevinin-1E-OG9c-De-NH2 might represent a promising candidate for the treatment of S. aureus skin infections.


Asunto(s)
Antiinfecciosos , Dermatitis Atópica , Staphylococcus aureus Resistente a Meticilina , Animales , Staphylococcus aureus , Secuencia de Aminoácidos , Péptidos Antimicrobianos , Dermatitis Atópica/tratamiento farmacológico , Antiinfecciosos/farmacología , Anuros , Antibacterianos/farmacología , Ranidae/metabolismo , Piel/metabolismo , Pruebas de Sensibilidad Microbiana
5.
BMC Plant Biol ; 23(1): 345, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391700

RESUMEN

BACKGROUND: Perilla frutescens is widely used as both a medicine and a food worldwide. Its volatile oils are its active ingredients, and, based on the different volatile constituents, P. frutescens can be divided into several chemotypes, with perilla ketone (PK) being the most common. However, the key genes involved in PK biosynthesis have not yet been identified. RESULTS: In this study, metabolite constituents and transcriptomic data were compared in leaves of different levels. The variation in PK levels was the opposite of that of isoegoma ketone and egoma ketone in leaves at different levels. Based on transcriptome data, eight candidate genes were identified and successfully expressed in a prokaryotic system. Sequence analysis revealed them to be double bond reductases (PfDBRs), which are members of the NADPH-dependent, medium-chain dehydrogenase/reductase (MDR) superfamily. They catalyze the conversion of isoegoma ketone and egoma ketone into PK in in vitro enzymatic assays. PfDBRs also showed activity on pulegone, 3-nonen-2-one, and 4-hydroxybenzalacetone. In addition, several genes and transcription factors were predicted to be associated with monoterpenoid biosynthesis, and their expression profiles were positively correlated with variations in PK abundance, suggesting their potential functions in PK biosynthesis. CONCLUSIONS: The eight candidate genes encoding a novel double bond reductase related to perilla ketone biosynthesis were identified in P. frutescens, which carries similar sequences and molecular features as the MpPR and NtPR from Nepeta tenuifolia and Mentha piperita, respectively. These findings not only reveal the pivotal roles of PfDBR in exploring and interpreting PK biological pathway but also contribute to facilitating future studies on this DBR protein family.


Asunto(s)
Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla/genética , Monoterpenos , Cetonas , Oxidorreductasas
6.
BMC Plant Biol ; 23(1): 435, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723471

RESUMEN

BACKGROUND: During Fritillaria thunbergii planting, pests and diseases usually invade the plant, resulting in reduced yield and quality. Previous studies have demonstrated that using biocontrol agents can effectively control grubs and affect the steroid alkaloids content in F. thunbergii. However, the molecular regulatory mechanisms underlying the differences in the accumulation of steroid alkaloids in response to biocontrol agents remain unclear. RESULTS: Combined transcriptomic and metabolic analyses were performed by treating the bulbs of F. thunbergii treated with biocontrol agents during planting. Otherwise, 48 alkaloids including 32 steroid alkaloids, 6 indole alkaloids, 2 scopolamine-type alkaloids, 1 isoquinoline alkaloid, 1 furoquinoline alkaloid, and 6 other alkaloids were identified. The content of steroidal alkaloids particularly peimine, peiminine, and veratramine, increased significantly in the group treated with the biocontrol agents. Transcriptome sequencing identified 929 differential genes using biocontrol agents, including 589 upregulated and 340 downregulated genes. Putative biosynthesis networks of steroid alkaloids have been established and combined with differentially expressed structural unigenes, such as acetyl-CoA C-acetyl-transferase, acelyl-CoAC-acetyltransferase3-hydroxy-3-methylglutaryl-coenzyme A synthase, 1-deoxy-D-xylulose-5-phosphate reductor-isomerase, 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase. In addition, biological processes such as amino acid accumulation and oxidative phosphorylation were predicted to be related to the synthesis of steroid alkaloids. Cytochrome P450 enzymes also play crucial roles in the steroid alkaloid synthesis. The transcription factor families MYB and bHLH were significantly upregulated after using biocontrol agents. CONCLUSIONS: Biocontrol agents increased the steroid alkaloids accumulation of steroid alkaloids by affecting key enzymes in the steroid alkaloid synthesis pathway, biological processes of oxidative phosphorylation and amino acid synthesis, cytochrome P450 enzymes, and transcription factors. This study revealed the mechanism underlying the difference in steroidal alkaloids in F. thunbergii after using biocontrol agents, laying the groundwork for future industrial production of steroid alkaloids and ecological planting of medicinal materials in the future.


Asunto(s)
Alcaloides , Fritillaria , Transcriptoma , Perfilación de la Expresión Génica , Aminoácidos
7.
FASEB J ; 36(5): e22280, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35394671

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory, and the underlying mechanism remains unclear. Here, we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a non-alcoholic fatty liver disease (NAFLD) model in a high-fat diet (HFD)-fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of NAFLD. We observed that Nrf2 expression levels were upregulated in patients with NAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1c activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Decreased autophagy caused reduced lipolysis in the liver. Importantly, chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to the LAMP1 promoter and regulated its transcriptional activity. Accordingly, we report that Nrf2-LAMP1 interaction plays an indispensable role in Nrf2-regulated hepatosteatosis. Our data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1c activity and attenuating autophagy. Our findings provide a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver. We believe that multi-target intervention of Nrf2 is a novel strategy for the treatment of NAFLD.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
8.
J Sep Sci ; 46(20): e2300384, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37691057

RESUMEN

In this study, a low-cost efficient online derivatization system was developed which allows for the detection of various types of mono- and oligo-saccharides only utilizing high-performance liquid chromatography (HPLC)-ultraviolet detector (UV) system. In the proposed method, phenylhydrazine was used as the derivatization reagent and directly spiked in the mobile phase, allowing for the separation and detection of mono- and oligosaccharides in an accessible instrument system (HPLC-UV). And the online derivatization design of the proposed method has significantly reduced the potential harm of derivatization reagents to the analysts. Furthermore, critical chromatographic parameters were optimized via the Box-Behnken design strategy, culminating in the ideal response for saccharides. Finally, the methodology validation of the proposed method was conducted. The proposed method showed satisfactory linear ranges with acceptable correlation coefficients (R2  > 0.99), outstanding accuracy (Recovery: 95.3%-105.6%), high intra-day precision (relative standard deviation [RSD]: 1.4%-7.1%) and inter-day precision (RSD: 2.0%-7.4%). The robustness and ruggedness of the proposed method were proved as the recovery values in the range of 95.0%-104.6% and 95.1%-104.8% for robustness and ruggedness, respectively. These satisfactory validation results confirm the applicability and reliability of the proposed method for the analysis of saccharides in various complex real-world samples.


Asunto(s)
Carbohidratos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Indicadores y Reactivos
9.
J Sep Sci ; 46(7): e2200913, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36737046

RESUMEN

Euryales Semen was a traditional Chinese medicine, which has been commonly used to treat spermatorrhea, enuresis, and frequent urination. Flavonoids were a critical ingredient in determining the function and quality of Euryales Semen. At present, no effective method has been established for the qualitative of Euryales Semen flavonoids. In this study, an ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry method was established for flavonoids. By comparison with standard or literature data, 32 flavonoid compounds have been identified in Euryales Semen. Based on the qualitative results, an ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectroscopy method was developed for the main components, and the linearity, the limit of detection, limit of quantification, repeatability, precision, stability, and recovery of the method were verified. The principal component analysis and the hierarchical clustering heatmaps analysis showed that the 30 batches of samples were distinctly separated into the North Gordon Euryale and South Gordon Euryale, and the measured contents of the six flavonoids in North Gordon Euryale were more abundant than in South Gordon Euryale, especially isoquercitrin, hesperetin, and quercetin. It provided a scientific basis for the quality control of Euryales Semen and a theoretical basis for the rational utilization of Euryales Semen resources.


Asunto(s)
Medicamentos Herbarios Chinos , Flavonoides , Flavonoides/análisis , Espectrometría de Masas en Tándem/métodos , Semen/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis
10.
J Sci Food Agric ; 103(8): 3850-3859, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36308756

RESUMEN

BACKGROUND: Euryale ferox Salisb. is widely grown in China and Southeast Asia as a grain crop and medicinal plant. The composition, morphology, structure, physicochemical properties, thermal properties, and in vitro digestibility of North Euryale ferox seeds starch (NEFS), hybrid Euryale ferox seeds starch (HEFS), and South Euryale ferox seeds starch (SEFS) were studied. RESULT: Of the varieties that were studied, the amylose content of NEFS (23.03%) was the highest. Starch granules of each variety were smooth, sharp, small, and had an average diameter of 2 µm. All three varieties were A-type crystals with crystallinity ranging from 26.42% to 28.17%. The degree of double helix and the short-range order ranged from 1.9006 to 2.5324 and 1.4294 to 1.6006, respectively. The high proportion of C1 region in NEFS (17.74%) and HEFS (17.66%) were found. Thermodynamic properties in North Euryale ferox seeds included the highest onset temperature (To ) (71.43 °C), peak temperature (Tp ) (76.60 °C), conclusion temperature (Tc ) (82.77 °C), enthalpy of gelatinization (ΔH) (12.64 J g-1 ), and peak viscosity (1514 mPa·s). All three varieties maintained a low level of in vitro digestibility, with the highest resistant starch (RS) content (29.57%), the lowest rapidly digestible starch (RDS) content (27.07%), and the slowest hydrolysis kinetic constant (0.0303) in NEFS. CONCLUSION: The results revealed that the low digestibility of NEFS was attributable to compact granules, high crystallinity, high degree of order, and strong thermal stability. These digestive, physicochemical, and thermodynamic properties provide information for the future application of Euryale ferox seed starch in the food industry. © 2022 Society of Chemical Industry.


Asunto(s)
Nymphaeaceae , Almidón , Amilosa/análisis , Nymphaeaceae/química , Semillas/química , Almidón/química , Temperatura , Viscosidad , Fenómenos Químicos
11.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6039-6050, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114210

RESUMEN

Terpenoids are important secondary metabolites of plants that possess both pharmacological activity and economic value. Terpene synthases(TPSs) are key enzymes in the synthesis process of terpenoids. In order to investigate the TPS gene family members and their potential functions in Schizonepeta tenuifolia, this study conducted a systematic analysis of the TPS gene family of S. tenuifolia based on the whole genome data of S. tenuifolia using bioinformatics methods. The results revealed 57 StTPS members identified from the genome database of S. tenuifolia. The StTPS family members encoded 285-819 amino acids, with protein molecular weights ranging from 32.75 to 94.11 kDa, all of which were hydrophilic proteins. The StTPS family members were mainly distributed in the cytoplasm and chloroplasts, exhibiting a random and uneven physical localization pattern. Phylogenetic analysis showed that the StTPS genes family were divided into six subgroups, mainly belonging to the TPS-a and TPS-b subfamilies. Promoter analysis predicted that the TPS gene family members could respond to various stressors such as light, abscisic acid, and methyl jasmonate(MeJA). Transcriptome data analysis revealed that most of the TPS genes were expressed in the roots of S. tenuifolia, and qRT-PCR analysis was conducted on genes with high expression in leaves and low expression in roots. Through the analysis of the TPS gene family of S. tenuifolia, this study identified StTPS5, StTPS18, StTPS32, and StTPS45 as potential genes involved in sesquiterpene synthesis of S. tenuifolia. StTPS45 was cloned for the construction of an prokaryotic expression vector, providing a reference for further investigation of the function and role of the TPS gene family in sesquiterpene synthesis.


Asunto(s)
Lamiaceae , Sesquiterpenos , Filogenia , Terpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lamiaceae/genética
12.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630768

RESUMEN

Polyphenolic acids are the widely occurring natural products in almost each herbal plant, among which rosmarinic acid (RA, C18H16O8) is well-known, and is present in over 160 species belonging to many families, especially the Lamiaceae. Aside from this herbal ingredient, dozens of its natural derivatives have also been isolated and characterized from many natural plants. In recent years, with the increasing focus on the natural products as alternative treatments, a large number of pharmacological studies have been carried out to demonstrate the various biological activities of RA such as anti-inflammation, anti-oxidation, anti-diabetes, anti-virus, anti-tumor, neuroprotection, hepatoprotection, etc. In addition, investigations concerning its biosynthesis, extraction, analysis, clinical applications, and pharmacokinetics have also been performed. Although many achievements have been made in various research aspects, there still exist some problems or issues to be answered, especially its toxicity and bioavailability. Thus, we hope that in the case of natural products, the present review can not only provide a comprehensive understanding on RA covering its miscellaneous research fields, but also highlight some of the present issues and future perspectives worth investigating later, in order to help us utilize this polyphenolic acid more efficiently, widely, and safely.


Asunto(s)
Lamiaceae , Extractos Vegetales , Cinamatos/química , Cinamatos/farmacología , Depsidos/química , Depsidos/farmacología , Humanos , Extractos Vegetales/química , Ácido Rosmarínico
13.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5838-5848, 2022 Nov.
Artículo en Zh | MEDLINE | ID: mdl-36472002

RESUMEN

Hd-Zip, a unique transcription factor in plant kingdom, influences the growth, development, and secondary metabolism of plants. Hd-zip Ⅳ is thought to play an important role in trichome development of Schizonepeta tenuifolia. This study aims to explore the functions of StHD1 and StHD8 in Hd-zip Ⅳ subfamily in peltate glandular trichome development. To be specific, the expression patterns of the two genes and interaction between the proteins encoded by them were analyzed based on transcriptome sequencing and two-hybrid screening. The subcellular localization was performed and functions of the genes were verified in tobacco and S. tenuifolia. The results showed that StHD1 and StHD8 had high similarity to HD-Zip Ⅳ proteins of other plants and they all had the characteristic conserved domains of HD-Zip Ⅳ subfamily. They were located in the nucleus. The two genes mainly expressed in young tissues and spikes, and StHD1 and StHD8 proteins interacted with each other. The density and length of glandular trichomes increased significantly in tobacco plants with the overexpression of StHD1 and StHD8. Inhibiting the expression of StHD1 and StHD8 by VIGS(virus-induced gene silencing) in S. tenuifolia resulted in the reduction in the density of peltate glandular trichomes, the expression of key genes related to mono-terpene synthesis, and the relative content of limonene and pulegone, the main components of monoterpene. These results suggested that StHD1 and StHD8 of S. tenuifolia formed a complex to regulate glandular trichomes and affect the biosynthesis of monoterpenes.


Asunto(s)
Lamiaceae , Tricomas , Tricomas/genética , Tricomas/metabolismo , Lamiaceae/genética , Nicotiana/genética , Monoterpenos/metabolismo , Clonación Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2565-2571, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35718474

RESUMEN

The integration of habitat processing and processing of Chinese medicinal decoction pieces(hereinafter referred to as "integration") has changed the traditional processing mode and can ensure the quality of Chinese medicinal decoction pieces from the source. This paper introduced the background of integration from the connotation and denotation of integration, relevant policies and regulations, and variety development. The present situation of integration was analyzed from the existing problems and current research progress, and the development suggestions were proposed. It is considered that although the integration is in line with the development trend of the industry with the advantages of improving the quality and standardizing the management of decoction pieces, there are still some problems, such as the lack of variety selection principles and production technical specifications, imperfect quality control stan-dards in the production process, and inadequate integration of standards and supervision. Therefore, it is suggested to determine the integrated variety selection principles and variety range as soon as possible, establish relevant technical specifications, improve quality control standards in the production process, and strengthen policy guidance and supervision to promote the healthy and orderly development of integration.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , China , Ecosistema , Control de Calidad
15.
BMC Plant Biol ; 21(1): 277, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34144672

RESUMEN

BACKGROUND: Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. RESULTS: Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC-MS and GC-MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. CONCLUSIONS: The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.


Asunto(s)
Perilla frutescens/química , Tricomas/química , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Rastreo , Perilla frutescens/genética , Perilla frutescens/ultraestructura , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/química , Raíces de Plantas/química , Tallos de la Planta/química , Plantas Medicinales/química , Plantas Medicinales/ultraestructura , ARN de Planta , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma , Tricomas/ultraestructura
16.
BMC Plant Biol ; 21(1): 285, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157988

RESUMEN

BACKGROUND: Angelica sinensis (Oliv.) Diels (A. sinensis) is a Chinese herb grown in different geographical locations. It contains numerous active components with therapeutic value. Rhizosphere microbiomes affect various aspects of plant performance, such as nutrient acquisition, growth and development and plant diseases resistance. So far, few studies have investigated how the microbiome effects level of active components of A. sinensis. This study investigated whether changes in rhizosphere microbial communities and metabolites of A. sinensis vary with the soil microenvironment. Soils from the two main A. sinensis-producing areas, Gansu and Yunnan Province, were used to conduct pot experiments. The soil samples were divided into two parts, one part was sterilized and the other was unsterilized planting with the seedling variety of Gansu danggui 90-01. All seedlings were allowed to grow for 180 days. At the end of the experiment, radix A. sinensis were collected and used to characterize growth targets and chemical compositions. Rhizosphere soils were subjected to microbial analyses. RESULTS: Changes in metabolic profiles and rhizosphere microbial communities of A. sinensis grown under different soil microenvironments were similar. The GN (Gansu non-sterilized), YN (Yunnan non-sterilized), GS (Gansu sterilized), and YS (Yunnan sterilized) groups were significantly separated. Notably, antagonistic bacteria such as Sphingomonas, Pseudomonas, Lysobacter, Pseudoxanthomonas, etc. were significantly (p < 0.05) enriched in Gansu soil compared with Yunnan soil. Moreover, senkyunolide I and ligustilide dimers which were enriched in GS group were strongly positively correlated with Pseudomonas parafulva; organic acids (including chlorogenic acid, dicaffeoylquinic acid and 5-feruloylquinic acid) and their ester coniferyl ferulate which were enriched in YS Group were positively associated with Gemmatimonadetes bacterium WY71 and Mucilaginibater sp., respectively. CONCLUSIONS: The soil microenvironment influences growth and level/type of active components in A. sinensis. Further studies should explore the functional features of quality-related bacteria, identify the key response genes and clarify the interactions between genes and soil environments. This will reveal the mechanisms that determine the quality formation of genuine A. sinensis.


Asunto(s)
Angelica sinensis/metabolismo , Microbiología del Suelo , Angelica sinensis/anatomía & histología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Rizosfera
17.
Anal Bioanal Chem ; 413(4): 1073-1080, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33230701

RESUMEN

Phenylboronic acid-functionalized nanometer-sized CaCO3 particles (PBA-CaCO3) were designed to determine the carcinoembryonic antigen (CEA) glycoprotein with a portable Ca2+ ion-selective electrode (Ca-ISE) through a typical boronate ester bond. CaCO3 nanospheres were conjugated to 3-aminophenylboronic acid by amine-epoxy reaction, whereas target CEA was captured into the aptasensing interface by the immobilized thiolated aptamer on gold substrate. Upon PBA-CaCO3 introduction, 3-aminophenylboronic acid labeled to CaCO3 microsphere specifically recognized with CEA glycoprotein based on sugar-boronic acid interaction to form a sandwiched complex. The carried CaCO3 was dissolved under acidic conditions to release Ca2+ ion with a portable Ca-ISE readout. Thanks to the specific boronate ester bond between PBA and 1,2-diols, the synthesized PBA-CaCO3 exhibited good conjugation properties for CEA glycoprotein. Under optimum conditions, Ca-ISE-based aptasensing platform exhibited good electrode potential response for evaluation of target CEA, and allowed detection of CEA at a concentration as low as 7.3 pg mL-1. Importantly, Ca-ISE-based aptasensing system is readily extended to detect other disease-related glycoproteins by controlling the corresponding aptamer.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Ácidos Borónicos/química , Carbonato de Calcio/química , Antígeno Carcinoembrionario/sangre , Electrodos de Iones Selectos , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Humanos , Límite de Detección , Nanoestructuras/química , Nanoestructuras/ultraestructura
18.
Mikrochim Acta ; 188(1): 14, 2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389237

RESUMEN

A simple and feasible pH meter-based immunoassay is reported for detection of C-reactive protein (CRP) using glucose oxidase (GOD)-conjugated dendrimer loaded with platinum nanozyme. Initially, platinum nanozymes were loaded into the dendrimers through an in situ synthetic method. Then, GOD and monoclonal anti-CRP antibody with a high molar ratio were covalently conjugated onto carboxylated dendrimers via typical carbodiimide coupling. The immunoreaction was carried out with a competitive mode in a CRP-coated microplate. Along with formation of immunocomplex, the added glucose was oxidized into gluconic acid and hydrogen peroxide by GOD, and the latter was further decomposed by platinum nanozyme, thus accelerating chemical reaction in the positive direction. The produced gluconic acid changed the pH of detection solution, which was determined using a handheld pH meter. Under optimum conditions, the pH meter-based immunoassay gave a good signal toward target CRP from 0.01 to 100 ng mL-1. The limit of detection was 5.9 pg mL-1. An intermediate precision ≤ 11.2% was acquired with batch-to-batch identification. No nonspecific adsorption was observed during a series of procedures to detect target CRP, and the cross-reaction against other biomarkers was very low. Importantly, our system gave well-matched results for analysis of human serum samples relative to a referenced ELISA kit.Graphical abstract.


Asunto(s)
Proteína C-Reactiva/análisis , Dendrímeros/química , Glucosa Oxidasa/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/inmunología , Proteína C-Reactiva/inmunología , Catálisis , Humanos , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Límite de Detección , Oxidación-Reducción , Platino (Metal)/química , Reproducibilidad de los Resultados
19.
Zhongguo Zhong Yao Za Zhi ; 46(4): 931-937, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645099

RESUMEN

Based on the characteristics and ISSR molecular marker technology, the study is aimed to compare and perform genetic diversity analysis on Sparganium stoloniferum from 7 regions. Molecular identification method was established for S. stoloniferum from Hunan province. Differences among Sparganii Rhizoma samples from seven habitats were analyzed via measuring weight, length, width and thickness of them. Genetic diversity of S. stoloniferum from 7 regions was analyzed by screening out primers amplifying clear band and showing rich polymorphism, then a cultivars dendrogram was built. The target primer was screened out, and the specific band was sequenced. Nine ISSR primers were selected to amplified clear band, rich polymorphism. A total of 73 bands were amplified by nine ISSR primers selected from 27 ISSR primers. On average, each primer produced 8.0 bands. A total of 38 bands were polymorphic, which occupied 52.8% of all bands. The cultivars dendrogram showed the genetic similarity was 0.54-0.94. Genetic similarity coefficient of S. stoloniferum from Jiangsu province, Anhui province and Jiangxi province was big, indicating the differences among them were slight on genetic level. S. stoloniferum from Hunan province is quite different from samples from the other six habitats on appea-rance and genetic level. A specific band(327 bp) in S. stoloniferum from Hunan province was obtained via ISSR-857 primer, and was sequenced. According BLASTn database, there were few sequences similar to the gene fragment and had little correlation with the growth process of plant. ISSR molecular marker technology provides a new idea for the identification of S. stoloniferum. This result confirmed the particularity of S. stoloniferum from ancient Jingzhou.


Asunto(s)
Medicamentos Herbarios Chinos , Variación Genética , Polimorfismo Genético , China , Marcadores Genéticos/genética , Repeticiones de Microsatélite , Filogenia
20.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4712-4720, 2021 Sep.
Artículo en Zh | MEDLINE | ID: mdl-34581080

RESUMEN

Leaves of Euryale ferox are rich in anthocyanins. Anthocyanin synthesis is one of the important branches of the flavonoid synthesis pathway, in which flavonoid 3'-hydroxylase(F3'H) can participate in the formation of important intermediate products of anthocyanin synthesis. According to the data of E. ferox transcriptome, F3'H cDNA sequence was cloned in the leaves of E. ferox and named as EfF3'H. The correlation between EfF3'H gene expression and synthesis of flavonoids was analyzed by a series of bioinforma-tics tools and qRT-PCR. Moreover, the biological function of EfF3'H was verified by the heterologous expression in yeast. Our results showed that EfF3'H comprised a 1 566 bp open reading frame which encoded a hydrophilic transmembrane protein composed of 521 amino acid residues. It was predicted to be located in the plasma membrane. Combined with predictive analysis of conserved domains, this protein belongs to the cytochrome P450(CYP450) superfamily. The qRT-PCR results revealed that the expression level of EfF3'H was significantly different among different cultivars and was highly correlated with the content of related flavonoids in the leaves. Eukaryotic expression studies showed that EfF3'H protein had the biological activity of converting kaempferol to quercetin. In this study, EfF3'H cDNA was cloned from the leaves of E. ferox for the first time, and the biological function of the protein was verified. It provi-ded a scientific basis for further utilizing the leaves of E. ferox and laid a foundation for the further analysis of the biosynthesis pathway of flavonoids in medicinal plants.


Asunto(s)
Antocianinas , Proteínas de Plantas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA