Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 98(7): 2247-2259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635053

RESUMEN

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.


Asunto(s)
Endotelio Vascular , Fluorenos , FN-kappa B , Especies Reactivas de Oxígeno , Pez Cebra , Animales , Especies Reactivas de Oxígeno/metabolismo , Fluorenos/toxicidad , FN-kappa B/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Permeabilidad Capilar/efectos de los fármacos
2.
Food Microbiol ; 122: 104556, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839235

RESUMEN

Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.


Asunto(s)
Ésteres , Etanol , Fermentación , Ácido Láctico , Saccharomycetales , Etanol/metabolismo , Ácido Láctico/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/crecimiento & desarrollo , Ésteres/metabolismo , Transcriptoma , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica
3.
Environ Toxicol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119817

RESUMEN

Acute lung injury (ALI) is a difficult condition to manage, especially when it is complicated by bacterial sepsis. Hibifolin, a flavonoid glycoside, has anti-inflammatory properties that make it a potential treatment for ALI. However, more research is needed to determine its effectiveness in LPS-induced ALI. In this study, male ICR mice were treated with hibifolin before LPS-induced ALI. Protein content and neutrophil count in bronchoalveolar lavage (BAL) fluid were measured by BCA assay and Giemsa staining method, respectively. The levels of proinflammatory cytokines and adhesive molecules were detected by ELISA assay. The expression of NFκB p65 phosphorylation, IκB degradation, and Akt phosphorylation was assessed by western blot assay. Hibifolin pre-treatment significantly reduced pulmonary vascular barrier dysfunction and neutrophil infiltration into the BAL fluid in LPS-induced ALI mice. In addition, LPS-induced expression of proinflammatory cytokines (IL-1ß, IL-6, TNF-α) and adhesive molecules (ICAM-1, VCAM-1) within the BAL fluid were markedly reduced by hibifolin in LPS-induced ALI mice. More, hibifolin inhibited LPS-induced phosphorylation of NFκB p65, degradation of IκB, and phosphorylation of Akt in lungs with ALI mice. In conclusion, hibifolin shows promise in improving the pathophysiological features and proinflammatory responses of LPS-induced ALI in mice through the NFκB pathway and its upstream factor, Akt phosphorylation.

4.
Cell Mol Neurobiol ; 43(3): 1181-1196, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35661286

RESUMEN

Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.


Asunto(s)
Axones , Lantano , Ratas , Femenino , Animales , Lantano/toxicidad , Ratas Wistar , Transducción de Señal , Proteínas Serina-Treonina Quinasas
5.
Ecotoxicol Environ Saf ; 250: 114496, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608567

RESUMEN

The prevalence of lung cancer in women currently merits our attentions. However, cigarette exposure alone does not tell the whole story that lung cancer is more prevalent among non-smoking women. Since female lung cancer is closely linked to estrogen levels, many of endocrine disrupting chemicals (EDCs), as the substances similar to estrogen, affect hormone levels and become a potential risk of female lung cancer. Additionally, the combined toxicity of EDCs in daily environment has only been discussed on a limited scale. Consequently, this study explored the cancer-promoting effect of two representative substances of EDCs namely Bisphenol A (BPA) and Di(2-Ethylhexyl) Phthalate (DEHP) after their exposure alone or in combination, using a rat pulmonary tumor model published previously, combining bioinformatics analysis based on The Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA) databases. It demonstrated that BPA and DEHP enhanced the promotion of pulmonary tumor in female rats, either alone or in combination. Mechanistically, BPA and DEHP mainly directly bound and activated ESR2 protein, phosphorylated CREB protein, activated HDAC6 transcriptionally, induced the production of the proto-oncogene c-MYC, and accelerated the formation of pulmonary tumor in female rats. Remarkably, BPA, rather than DEHP, exhibited a much more critical effect in female lung cancer. Additionally, the transcription factor ESR2 was most affected in carcinogenesis, causing genetic disruption. Furthermore, the TCGA database revealed that ESR2 could enhance the promotion and progression of non-small cell lung cancer in females via activating the WNT/ß-catenin pathway. Finally, our findings demonstrated that BPA and DEHP could enhance the promotion of pulmonary carcinoma via ESR2 in female rats and provide a potential and valuable insight into the causes and prevention of lung cancer in non-smoking women due to EDCs exposure.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Dietilhexil Ftalato , Disruptores Endocrinos , Neoplasias Pulmonares , Animales , Femenino , Ratas , Compuestos de Bencidrilo/toxicidad , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Carcinoma de Pulmón de Células no Pequeñas/genética , Dietilhexil Ftalato/toxicidad , Disruptores Endocrinos/toxicidad , Receptor beta de Estrógeno , Estrógenos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética
6.
Ecotoxicol Environ Saf ; 264: 115401, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634479

RESUMEN

PURPOSE: Aluminum is an environmental toxicant whose long-term exposure is closely associated with nervous system impairment. This study mainly investigated neurological impairment induced by subchronic aluminum exposure via activating NLRP3-medicated pyroptosis pathway. METHODS: In vivo, Kunming mice were exposed to AlCl3 (30.3 mg/kg, 101 mg/kg and 303 mg/kg) via drinking water for 3 months, and administered with Rsv (100 mg/kg) by gavage for 1 month. Cognitive impairment was assessed by Morris water maze test, and pathological injury was detected via H&E staining. BBB integrity, pyroptosis and neuroinflammation were evaluated through western blotting and immunofluorescence methods. In vitro, BV2 microglia was treated with AlCl3 (0.5 mM, 1 mM and 2 mM) to sensitize pyroptosis pathway. The protein interaction was verified by co-immunoprecipitation, and neuronal damage was estimated via a conditioned medium co-culture system with BV2 and TH22 cells. RESULTS: Our results showed that AlCl3 induced mice memory disorder, BBB destruction, and pathological injury. Besides, aluminum caused glial activation, sensitized DDX3X-NLRP3 pyroptosis pathway, released cytokines IL-1ß and IL-18, initiating neuroinflammation. BV2 microglia treated with AlCl3 emerged hyperactivation and pyroptotic death, and Ddx3x knockdown inhibited pyroptosis signaling pathway. DDX3X acted as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome and G3BP1 stress granules. Furthermore, aluminum-activated microglia had an adverse effect on co-cultured neurons and destroyed nervous system homeostasis. CONCLUSION: Aluminum exposure could induce pyroptosis and neurotoxicity. DDX3X determined live or die via selectively regulating pro-survival stress granules or pro-death NLRP3 inflammasome. Excessive activation of microglia might damage neurons and aggravate nerve injury.


Asunto(s)
Inflamasomas , Piroptosis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aluminio/metabolismo , Enfermedades Neuroinflamatorias , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Sistema Nervioso Central
7.
Ecotoxicol Environ Saf ; 249: 114373, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508838

RESUMEN

INTRODUCTION: Aluminum is everywhere in nature and is a recognized neurotoxicant closely associated with various neurodegenerative diseases. Neuroinflammation occurs in the early stage of neurodegenerative diseases, but the underlying mechanism by which aluminum induces neuroinflammation remains unclear. MATERIAL AND METHODS: A 3-month subchronic aluminum exposure mouse model was established by drinking water containing aluminum chloride (AlCl3). Microglia BV2 cells and hippocampal neuron HT22 cells were treated with AlCl3 in vitro. BBG and YC-1 were used as intervention agents. RESULTS: Aluminum could activate microglia and increase the level of extracellular ATP, stimulate P2X7 receptor, HIF-1α, activate NLRP3 inflammasome and CASP-1, release more cytokine IL-1ß, and induce an inflammatory response in nerve cells. There was a mutual regulatory relationship between P2X7 and HIF-1α at mRNA and protein levels. The co-culture system of BV2-HT22 cells observed that conditioned medium from microglia treated with aluminum could aggravate neuronal morphological damage, inflammatory response and death. While BBG and YC-1 intervention could rescue these injuries to some extent. CONCLUSION: The P2X7-NLRP3 pathway was involved in aluminum-induced neuroinflammation and injury. P2X7 and HIF-1α might mutually regulate and promote the progression of neuroinflammation, both BBG and YC-1 could relieve it.


Asunto(s)
Aluminio , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7 , Animales , Ratones , Aluminio/toxicidad , Aluminio/metabolismo , Inflamasomas/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
8.
Ecotoxicol Environ Saf ; 258: 114996, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37167740

RESUMEN

A growing body of evidence shows that cigarette smoking impairs cognitive performance. The 'Calcium Hypothesis' theory of neuronopathies reveals a critical role of aberrant calcium signaling in compromised cognitive functions. However, the underlying implications of abnormalities in calcium signaling in the neurotoxicity induced by cigarette smoke (CS) have not yet been identified. CACNA2D1, an important auxiliary subunit involved in the composition of voltage-gated calcium channels (VGCCs), was reported to affect the calcium signaling in neurons by facilitating VGCCs-mediated Ca2+ influx. ΔFOSB, an alternatively-spliced product of the Fosb gene, is an activity-dependent transcription factor induced robustly in the brain in response to environmental stimuli such as CS. Interestingly, our preliminary bioinformatics analysis revealed a significant co-expression between ΔFOSB and CACNA2D1 in brain tissues of patients with neurodegenerative diseases characterized by progressive cognitive decline. Therefore, we hypothesized that the activation of the ΔFOSB-CACNA2D1 axis in response to CS exposure might cause dysregulation of calcium homeostasis in hippocampal neurons via VGCCs-mediated Ca2+ influx, thereby contributing to cognitive deficits. To this end, the present study established a CS-induced mouse model of hippocampus-dependent cognitive impairment, in which the activation of the ΔFOSB-CACNA2D1 axis accompanied by severe calcium overload was observed in the mouse hippocampal tissues. More importantly, ΔFOSB knockdown-/overexpression-mediated inactivation/activation of the ΔFOSB-CACNA2D1 axis interdicted/mimicked CS-induced dysregulation of calcium homeostasis followed by severe cellular damage in HT22 mouse hippocampal neurons. Mechanistically speaking, a further ChIP-qPCR assay confirmed the physical interaction between transcription factor ΔFOSB and the Cacna2d1 gene promoter, suggesting a direct transcriptional regulation of the Cacna2d1 gene by ΔFOSB. Overall, our current work aims to deliver a unique insight into the neurotoxic mechanisms induced by CS to explore potential targets for intervention.


Asunto(s)
Calcio , Fumar Cigarrillos , Ratones , Animales , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Cognición
9.
Environ Toxicol ; 37(6): 1373-1381, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35156769

RESUMEN

BACKGROUND: Aluminum is mainly exposed to the general population through food and water, and is absorbed into the systemic circulation through intestine, which in turn damages the intestinal barrier. METHODS: The mice model of subchronic exposure to aluminum chloride (AlCl3 ) was established via oral. Tail suspension test was used to detect depressive behavior. H&E staining was performed to assess pathological intestinal injury. Intestinal permeability was estimated by exogenous Evans blue content. The level of inflammatory cytokines and tight junction protein were assessed via ELISA and western blotting. Simultaneously, resveratrol (Rsv, an agonist of Sirt1) was evaluated the protective role against intestinal barrier injuries caused by aluminum exposure. RESULTS: Our results showed that AlCl3 induced depressive-like behavior, intestinal pathological damage and intestinal barrier permeability, resulting in intestinal barrier dysfunction. Besides, aluminum induced the expression of inflammatory cytokines, which further triggered IRF8-MMP9-mediated downregulation of tight junction proteins including CLD1, OCLD and ZO-1. After Rsv treatment, SIRT1 expression was increased, depressive symptom was improved, pathological injury was reduced, inflammatory reaction was alleviated, and intestinal barrier function restored. CONCLUSION: Our findings revealed that aluminum exposure induced intestinal barrier dysfunction by IRF8-MMP9 signaling pathway. Rsv alleviated these injuries via activating SIRT1.


Asunto(s)
Aluminio , Metaloproteinasa 9 de la Matriz , Aluminio/toxicidad , Animales , Citocinas/metabolismo , Humanos , Factores Reguladores del Interferón/metabolismo , Mucosa Intestinal/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Resveratrol/farmacología , Sirtuina 1/metabolismo , Proteínas de Uniones Estrechas
10.
Mol Carcinog ; 60(10): 684-701, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34320692

RESUMEN

ERCC1 is a gene for repairing DNA damage whose function is related to carcinogenic-induced tumorigenesis and the effectiveness of platinum therapies. Circular RNAs (circRNAs) are products of posttranscriptional regulation with pleiotropic effects on the pathogenesis of lung cancer. We aim to identify that specific circRNAs derived from ERCC1 can regulate key biological processes involved in the development of lung cancer. We performed bioinformatics analysis, in vitro experiments, and analyzed clinical samples, to determine the biological features of a certain ERCC1-derived circRNA termed as hsa_circ_0051488 in benzo[a]pyrene diol epoxide-induced malignant transformed cell and lung cancer cell. The well-established model of transformed cells provided an ideal platform for analyzing the molecular characteristics of this circRNA in the malignant transformation of lung epithelial cell, which supports that hsa_circ_0051488 functions in the onset and growth of lung squamous cell carcinoma (LUSC). Further analysis indicates that the absence of hsa_circ_0051488 promoted the proliferation of cells with the malignant phenotype. Extensive experiments confirm that hsa_circ_0051488 is present in the cytoplasm and functioned as a competing endogenous RNA. In particular, hsa_circ_0051488 binds to mir-6717-5p, thereby modulating the expression of SATB2 gene, a lung cancer suppressor. Furthermore, our in silico experiments indicate that SATB2 can inhibit multiple tumor pathways and its expression positively correlated with the tumor suppressor gene CRMP1. These findings suggest a possible regulatory mechanism of hsa_circ_0051488 in LUSC, and that the newly discovered hsa_circ_0051488/miR-6717-5p/SATB2 axis may be a potential route for therapeutic intervention of LUSC.


Asunto(s)
Benzo(a)pireno/farmacología , Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Neoplasias Pulmonares/genética , ARN Circular/genética , Benzo(a)pireno/efectos adversos , Línea Celular Tumoral , Proliferación Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferencia de ARN , Transducción de Señal/efectos de los fármacos
11.
J Gastroenterol Hepatol ; 36(5): 1187-1196, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32881083

RESUMEN

BACKGROUND AND AIM: Pancreatic cancer is a fatal disease; currently, the risk factor survey is not suitable for sporadic pancreatic cancer, which has neither family history nor the genetic analysis data. The aim of the present study was to evaluate the roles of cholelithiasis and cholelithiasis treatments on pancreatic cancer risk. METHODS: Symptomatic adult patients with an index admission of cholelithiasis were selected from one million random samples obtained between January 2005 and December 2009. The control group was matched with a 1:1 ratio for sex, age, chronic pancreatitis, and pancreatic cystic disease. Subsequent pancreatic cancer, which we defined as pancreatic cancer that occurred ≥ 6 months later, and total pancreatic cancer events were calculated in the cholelithiasis and control groups. The cholelithiasis group was further divided into endoscopic sphincterotomy/endoscopic papillary balloon dilatation, cholecystectomy, endoscopic sphincterotomy/endoscopic papillary balloon dilatation and cholecystectomy, and no-intervention groups for evaluation. RESULTS: The cholelithiasis group and the matched control group included 8265 adults. The cholelithiasis group contained 86 cases of diagnosed pancreatic cancer, and the control group contained 8 cases (P < 0.001). The incidence rate ratio (IRR) of subsequent pancreatic cancer was significantly higher in the cholelithiasis group than in the control group (IRR: 5.28, P < 0.001). The IRR of subsequent pancreatic cancer was higher in the no-intervention group comparing with cholecystectomy group (IRR = 3.21, P = 0.039) but was similar in other management subgroups. CONCLUSION: Symptomatic cholelithiasis is a risk factor for pancreatic cancer; the risk is similar regardless of the intervention chosen for cholelithiasis.


Asunto(s)
Colelitiasis/complicaciones , Colelitiasis/terapia , Neoplasias Pancreáticas/etiología , Colecistectomía , Dilatación/métodos , Endoscopía del Sistema Digestivo/métodos , Femenino , Humanos , Incidencia , Masculino , Neoplasias Pancreáticas/epidemiología , Factores de Riesgo , Esfinterotomía Endoscópica , Factores de Tiempo
12.
Int J Med Sci ; 18(3): 778-784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33437213

RESUMEN

Objectives: Currently, diabetes mellitus (DM) and chronic obstructive pulmonary disease (COPD) have proven to be risk factors for each other. This study aimed to determine the risk relationship between COPD and five common oral medications for DM among patients with DM. Methods: This population-based cohort study was conducted from 2008 to 2013. Patient data were retrieved from the Longitudinal Health Insurance Database (LHID) of the National Health Insurance Research Database (NHIRD). After pairing by gender, age, and index date, time-to-event analysis and multiple regression analysis were performed to determine the factors associated with COPD in patients taking oral medication for DM, including age, gender, income, and comorbidities. We identified 1,028 patients who took oral medication for DM and 1,028 controls who did not take oral medication for DM. Results: We observed that the use of α-glucosidase inhibitors was associated with a higher risk of COPD (hazard ratio [HR]: 1.964, 95% confidence interval [CI]: 1.207-2.380). Furthermore, compared with the control group, α-glucosidase inhibitor users had a higher risk of COPD (HR: 2.295, 95% CI: 1.304-4.038), and no significant difference was observed in other oral medications for DM. Conclusions: Based on present results, we could suggest that patients with DM who used α-glucosidase inhibitors are probably a higher risk of COPD. We recommend that in the future, treatment with α-glucosidase inhibitors upregulate the occurrence of COPD might through gastrointestinal side effects and malnutrition.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Administración Oral , Adulto , Anciano , Estudios de Casos y Controles , Comorbilidad , Diabetes Mellitus/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Taiwán/epidemiología
13.
Int J Clin Pract ; 75(8): e14283, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33914376

RESUMEN

BACKGROUND: Patients with gout have an increased risk of urolithiasis and usually need urate-lowering therapy (ULT) for the prevention of disease progression. However, there is a paucity of clinical data regarding the risk of future urolithiasis in ULT users. METHODS: This nested case-control study was performed using the Taiwan National Health Insurance Research Database. The aim of this study was to examine whether ULT (xanthine oxidase inhibitors [XOIs] or uricosuric agents) is associated with risk of future urolithiasis in patients with gout. Data were collected from January 2000 to December 2012. RESULTS: This study included 2307 case patients and 2307 matched controls. Case patients had gout that developed into urolithiasis, and control patients had gout but were not diagnosed with urolithiasis during the study period. Patients had a mean age of 56.3 years at diagnosis of gout, and 83.2% were male patients. No association was detected between use of XOIs or uricosuric agents and risk of future urolithiasis. Furthermore, there was no significant difference in the risk of future urolithiasis in patients exposed to various cumulative days of XOI or uricosuric prescriptions. CONCLUSION: The present study provides evidence that neither XOIs nor uricosuric agents are associated with risk of future urolithiasis in patients with gout. Before the availability of more clinical evidence, ensuring high fluid intake and prospective monitoring of urolithiasis development are still important for uricosuric agent users.


Asunto(s)
Gota , Preparaciones Farmacéuticas , Urolitiasis , Estudios de Casos y Controles , Gota/complicaciones , Gota/tratamiento farmacológico , Gota/epidemiología , Supresores de la Gota/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Taiwán/epidemiología , Ácido Úrico , Urolitiasis/inducido químicamente , Urolitiasis/tratamiento farmacológico , Urolitiasis/epidemiología
14.
Ecotoxicol Environ Saf ; 221: 112453, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34186418

RESUMEN

Breast cancer (BrCa) as one of the major malignancies threatening women's health worldwide occurs due to the genetic and environmental interactions. Epidemiological studies have suggested that exposure to endocrine disrupting chemicals (EDCs) can elevate the risk of breast cancer. Di-(2-ethylhexyl)-phthalate (DEHP) and bisphenol A (BPA) are known as two typical EDCs. Although several studies have implied that there appear to have adverse effects of exposure to BPA or DEHP alone on breast development, no study to date has demonstrated the exact toxic effect of combined exposure to DEHP and BPA on breast tumorigenesis. In the present study, we performed an in vivo experiment including 160 female Sprague-Dawley (SD) rats, in which 80 rats were randomly allocated to 4 groups including control group given to normal diet, DEHP (150 mg/kg body weight/day), BPA (20 mg/kg body weight/day), and DEHP (150 mg/kg body weight/day) combined with BPA (20 mg/kg body weight/day) by gavage for 30 weeks. Additionally, a DEN/MNU/DHPN (DMD)-induced carcinogenesis animal model was also established to assess their effect on tumor promotion. Namely, the other 80 SD rats were separated into another 4 groups: in addition to DMD initiation each group treated with vehicle, DEHP, BPA and the combination of BPA and DEHP respectively. Our data demonstrated that BPA alone or in combination with DEHP may induce hyperplasia of mammary glands, including the proliferation of ductal epithelial cells and an increase in the number of lobules and acinus after a 30-week exposure. Notably, co-exposure to DEHP and BPA increased the incidence and reduced the latency of mammary tumor, which seemed to enhance the susceptibility of carcinogens-induced tumor. Mechanistically, our results supported the hypothesis that exposure to BPA and DEHP might promote breast cancer dependent on Esr1 and HDAC6 as pivotal factors, and further lead to the activation of oncogene c-Myc. Our study suggested that BPA combined with DEHP facilitate the occurrence of mammary tumors, which contributed to advance our understanding in the complex effects of compound exposure to endocrine disrupting chemicals.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Dietilhexil Ftalato/toxicidad , Disruptores Endocrinos/toxicidad , Receptor alfa de Estrógeno/metabolismo , Histona Desacetilasa 6/metabolismo , Neoplasias Mamarias Animales/inducido químicamente , Fenoles/toxicidad , Animales , Sinergismo Farmacológico , Receptor alfa de Estrógeno/genética , Femenino , Histona Desacetilasa 6/genética , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Ratas Sprague-Dawley , Activación Transcripcional , Regulación hacia Arriba/efectos de los fármacos
15.
Ecotoxicol Environ Saf ; 213: 112062, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33618169

RESUMEN

Genotoxic stress from environmental pollutants plays a critical role in cytotoxicity. The most abundant nitro-polycyclic aromatic hydrocarbon in environmental pollutants, 1-nitropyrene (1-NP), is generated during fossil fuel, diesel, and biomass combustion under sunlight. Macrophages, the key regulators of the innate immune system, provide the first line of defense against pathogens. The toxic effects of 1-NP on macrophages remain unclear. Through a lactate dehydrogenase assay, we measured the cytotoxicity induced by 1-NP. Our results revealed that 1-NP induced genotoxicity also named DNA damage, including micronucleus formation and DNA strand breaks, in a concentration-dependent manner. Furthermore, 1-NP induced p53 phosphorylation and nuclear accumulation; mitochondrial cytochrome c release; caspase-3 and -9 activation and cleavage; and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage in a concentration-dependent manner. Pretreatment with the PARP inhibitor, 3-aminobenzamide, significantly reduced cytotoxicity, genotoxicity, and PARP-1 cleavage induced by 1-NP. Pretreatment with the caspase-3 inhibitor, z-DEVD-fmk, significantly reduced cytotoxicity, genotoxicity, PARP-1 cleavage, and caspase 3 activation induced by 1-NP. Pretreatment with the p53 inhibitor, pifithrin-α, significantly reduced cytotoxicity, genotoxicity, PARP-1 cleavage, caspase 3 activation, and p53 phosphorylation induced by 1-NP. We propose that cytotoxicity and genotoxicity induced by 1-NP by PARP-1 cleavage via caspase-3 and -9 activation through cytochrome c release from mitochondria and its upstream p53-dependent pathway in macrophages.


Asunto(s)
Caspasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Pirenos/toxicidad , Apoptosis/efectos de los fármacos , Caspasa 9/metabolismo , Citocromos c/metabolismo , Daño del ADN , Humanos , Macrófagos/metabolismo , Mitocondrias/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
Environ Toxicol ; 36(1): 45-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32830914

RESUMEN

Bisphenol-A-glycidyldimethacrylate (BisGMA) is a resin monomer frequently used in dentin restorative treatments. The leakage of BisGMA monomer from BisGMA-based polymeric resins can lead to cytotoxicity in macrophages. Rutin has various beneficial bioeffects, including antioxidation and antiinflammation. In this study, we found that pretreatment of RAW264.7 macrophages with rutin-inhibited cytotoxicity induced by BisGMA in a concentration-dependent manner. BisGMA-induced apoptosis, which was detected by levels of phosphatidylserine from the internal to the external membrane and formation of sub-G1, and genotoxicity, which was detected by cytokinesis-blocked micronucleus and single-cell gel electrophoresis assays, were inhibited by rutin in a concentration-dependent manner. Rutin suppressed the BisGMA-induced activation of caspase-3 and -9 rather than caspase-8. Rutin inhibited the activation of the mitochondrial apoptotic pathway, including cytochrome C release and mitochondria disruption, after macrophages were treated with BisGMA. Finally, BisGMA-induced reactive oxygen species (ROS) generation and antioxidant enzyme (AOE) deactivation could be reversed by rutin. Parallel trends were observed in the elevation of AOE activation and inhibition of ROS generation, caspase-3 activity, mitochondrial apoptotic pathway activation, and genotoxicity. These results suggested that rutin suppressed BisGMA-induced cytotoxicity through genotoxicity, the mitochondrial apoptotic pathway, and relatively upstream factors, including reduction of ROS generation and induction of AOE.

17.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884968

RESUMEN

Neochlorogenic acid (5-Caffeoylquinic acid; 5-CQA), a major phenolic compound isolated from mulberry leaves, possesses anti-oxidative and anti-inflammatory effects. Although it modulates lipid metabolism, the molecular mechanism is unknown. Using an in-vitro model of nonalcoholic fatty liver disease (NAFLD) in which oleic acid (OA) induced lipid accumulation in HepG2 cells, we evaluated the alleviation effect of 5-CQA. We observed that 5-CQA improved OA-induced intracellular lipid accumulation by downregulating sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) expression, which regulates the fatty acid synthesis, as well as SREBP2 and HMG-CoA reductases (HMG-CoR) expressions, which regulate cholesterol synthesis. Treatment with 5-CQA also increased the expression of fatty acid ß-oxidation enzymes. Remarkably, 5-CQA attenuated OA-induced miR-34a expression. A transfection assay with an miR-34a mimic or miR-34a inhibitor revealed that miR-34a suppressed Moreover, Sirtuin 1 (SIRT1) expression and inactivated 5' adenosine monophosphate-activated protein kinase (AMPK). Our results suggest that 5-CQA alleviates lipid accumulation by downregulating miR-34a, leading to activation of the SIRT1/AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ácido Clorogénico/análogos & derivados , Inflamación/prevención & control , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , MicroARNs/genética , Ácido Quínico/análogos & derivados , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proliferación Celular , Células Cultivadas , Ácido Clorogénico/farmacología , Dieta Alta en Grasa , Humanos , Inflamación/etiología , Inflamación/patología , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Ácido Quínico/farmacología , Sirtuina 1/genética
18.
J Sci Food Agric ; 101(15): 6525-6532, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34002396

RESUMEN

BACKGROUND: Chinese te-flavor baijiu (CTF), the most famous Chinese baijiu in Jiangxi province, China, is made from a unique daqu. Its characteristic style is closely related to the daqu used for fermentation. However, current studies on the effects of different production seasons on microbial communities, physicochemical indices, and volatile compounds in CTF daqu are very rare. RESULTS: The relationships of microbial communities, physicochemical indices, and volatile compounds in CTF daqu produced in summer (July and August) and autumn (September and October) were studied. The results of Illumina MiSeq sequencing indicated that there was greater bacterial diversity in the CTF daqu-7 (produced in July) and CTF daqu-8 (produced in August) and greater fungal diversity in the CTF daqu-9 (produced in September) and CTF daqu-10 (produced in October). The physicochemical indices of CTF daqu produced in different seasons were significantly different. It was determined that CTF daqu-9 had the highest esterification and liquefaction abilities. A total of 44 volatile compounds, including alcohols, esters, aldehydes, and ketones were identified in CTF daqu produced during different seasons. Among them, CTF daqu-9 had the greatest alcohol content. CONCLUSION: September (early autumn) is the best production period for CTF daqu. The results of the study provide a theoretical basis for the standardized and uniform production of Chinese baijiu. © 2021 Society of Chemical Industry.


Asunto(s)
Bacterias/aislamiento & purificación , Aromatizantes/química , Hongos/aislamiento & purificación , Microbiota , Compuestos Orgánicos Volátiles/química , Vino/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , China , Fermentación , Aromatizantes/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Humanos , Estaciones del Año , Gusto , Compuestos Orgánicos Volátiles/metabolismo , Vino/análisis
19.
Cell Mol Neurobiol ; 40(3): 459-475, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31776842

RESUMEN

Lanthanum (La) is a natural rare earth element. It has neurotoxic effects which can impair learning and memory in humans. However, its mechanism of neurotoxicity is unclear. Learning and memory are coordinated by dendritic spines which form tiny protruding structures on the dendritic branches of neurons. This study investigated the effect of LaCl3 exposure to pregnant and lactating rats on the offspring rats' learning and memory ability. In this study, rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, 0.5% LaCl3, respectively, and this was done from conception to the end of the location. The effects of LaCl3 on spatial learning and memory ability in offspring rats and in the development of dendritic spines in CA1 pyramidal cells were investigated. The results showed that LaCl3 impaired spatial learning and memory ability in offspring rats, and decreased dendritic spine density during development. In addition, LaCl3 can affect the expression of CaMKII, miRNA132, p250GAP, Tiam1, PARD3, and down-regulated the activation of Rac1 which led to a decrease in the expression of Rac1/PAK signaling pathway and downstream regulatory proteins Cortactin and actin-related protein 2/3 complex (Arp2/3 complex). This study indicated that the learning and memory impairment and the decrease of dendritic spine density in the offspring of LaCl3 exposure may be related to the down-regulation of the Rac1/PAK signaling pathway regulated by Tiam1 and p250GAP.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Lantano/toxicidad , Discapacidades para el Aprendizaje/inducido químicamente , Exposición Materna/efectos adversos , Trastornos de la Memoria/inducido químicamente , Animales , Animales Recién Nacidos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Lactancia/efectos de los fármacos , Lactancia/fisiología , Discapacidades para el Aprendizaje/fisiopatología , Discapacidades para el Aprendizaje/psicología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/psicología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
20.
Ecotoxicol Environ Saf ; 193: 110348, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32114240

RESUMEN

Due to rapid advances in the era of electronic technologies, indium has played the important material for the production of liquid crystal display screens in the semiconductor and optoelectronic industries. The present study focuses on evaluating the toxic effects and related mechanisms of indium chloride (InCl3) on RAW264.7 macrophages. Cytotoxicity was induced by InCl3 in a concentration- and time-dependent manner. InCl3 had the ability to induce macrophage death through apoptosis rather than through necrosis. According to the cytokinesis-block micronucleus assay and alkaline single-cell gel electrophoresis assay, InCl3 induced DNA damage, also called genotoxicity, in a concentration-dependent manner. Cysteine-dependent aspartate-directed protease (caspase)-3, -8, and -9 were activated by InCl3 in a concentration-dependent manner. Mitochondria dysfunction and cytochrome c release from the mitochondria were induced by InCl3 in a concentration-dependent manner. Downregulation of BCL2 and upregulation of BAD were induced by InCl3 in a concentration-dependent manner. More, we proposed that InCl3 treatment generated reactive oxygen species (ROS) in a concentration-dependent manner. In conclusion, the current study revealed that InCl3 induced macrophage cytotoxicity, apoptosis, and genotoxicity via a mitochondria-dependent apoptotic pathway and ROS generation.


Asunto(s)
Daño del ADN , Indio/toxicidad , Macrófagos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Citotoxinas/toxicidad , Macrófagos/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Proteína Letal Asociada a bcl/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA