Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 605(7909): 262-267, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35546188

RESUMEN

The scaling of silicon metal-oxide-semiconductor field-effect transistors has followed Moore's law for decades, but the physical thinning of silicon at sub-ten-nanometre technology nodes introduces issues such as leakage currents1. Two-dimensional (2D) layered semiconductors, with an atomic thickness that allows superior gate-field penetration, are of interest as channel materials for future transistors2,3. However, the integration of high-dielectric-constant (κ) materials with 2D materials, while scaling their capacitance equivalent thickness (CET), has proved challenging. Here we explore transferrable ultrahigh-κ single-crystalline perovskite strontium-titanium-oxide membranes as a gate dielectric for 2D field-effect transistors. Our perovskite membranes exhibit a desirable sub-one-nanometre CET with a low leakage current (less than 10-2 amperes per square centimetre at 2.5 megavolts per centimetre). We find that the van der Waals gap between strontium-titanium-oxide dielectrics and 2D semiconductors mitigates the unfavourable fringing-induced barrier-lowering effect resulting from the use of ultrahigh-κ dielectrics4. Typical short-channel transistors made of scalable molybdenum-disulfide films by chemical vapour deposition and strontium-titanium-oxide dielectrics exhibit steep subthreshold swings down to about 70 millivolts per decade and on/off current ratios up to 107, which matches the low-power specifications suggested by the latest International Roadmap for Devices and Systems5.

2.
Chem Rev ; 123(1): 327-378, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36410039

RESUMEN

Semiconductors with multiple anions currently provide a new materials platform from which improved functionality emerges, posing new challenges and opportunities in material science. This review has endeavored to emphasize the versatility of the emerging family of semiconductors consisting of mixed chalcogen and halogen anions, known as "chalcohalides". As they are multifunctional, these materials are of general interest to the wider research community, ranging from theoretical/computational scientists to experimental materials scientists. This review provides a comprehensive overview of the development of emerging Bi- and Sb-based as well as a new Cu, Sn, Pb, Ag, and hybrid organic-inorganic perovskite-based chalcohalides. We first highlight the high-throughput computational techniques to design and develop these chalcohalide materials. We then proceed to discuss their optoelectronic properties, band structures, stability, and structural chemistry employing theoretical and experimental underpinning toward high-performance devices. Next, we present an overview of recent advancements in the synthesis and their wide range of applications in energy conversion and storage devices. Finally, we conclude the review by outlining the impediments and important aspects in this field as well as offering perspectives on future research directions to further promote the development of chalcohalide materials in practical applications in the future.


Asunto(s)
Halógenos , Ciencia de los Materiales , Semiconductores
3.
Nature ; 561(7721): 88-93, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150772

RESUMEN

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

4.
Nano Lett ; 23(15): 7221-7227, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37338434

RESUMEN

Vacancies pose a major challenge in the production of high-quality crystals, particularly at the nanoscale. To address this problem, we report a convenient strategy that involves volumetric lattice reconstruction and dynamic metal complex docking to produce ultrasmall (10 nm) and bright core-shell upconversion nanoparticles (UCNPs). This strategy involves the formation of lanthanide ion-oleic acid complexes during postannealing in solution, which effectively removes vacancies in nanocrystals. The removal of vacancies restricts the diffusion of lanthanide sensitizers and emitters within the core, thus minimizing surface quenching. Our volumetric lattice reconstruction strategy provides fundamental insights into lattice engineering and presents a general strategy for purifying functional nanocrystals for applications in fields such as single-molecule tracking, quantum optics, energy conversion, and others.

5.
Small ; 19(20): e2207220, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807547

RESUMEN

Exceptional electronic, optoelectronic, and sensing properties of inorganic Cs-based perovskites are significantly influenced by the defect chemistry of the material. Although organic halide perovskites that have a polycrystalline structure are heavily studied, understanding of the defect properties at the grain boundaries (GB) of inorganic Cs-based perovskite quantum dots (QDs) is still limited. Here, morphology-dependent charge carrier dynamics of CsPbBr3 quantum dots at the nanoscale by performing scanning probe microscopy of thermally treated samples are investigated. The grain boundaries of defect-engineered samples show higher surface potential than the grain interiors under light illumination, suggesting an effective role of GBs as charge collection and transport channels. The lower density of crystallographic defects and lower trap density at GBs specifically of heat-treated samples cause insignificant dark current, lower local current hysteresis, and higher photocurrent, than the control samples. It is also shown that the decay rate of surface photovoltage of the heated sample is quicker than the control sample, which implies a considerable impact of ion migration on the relaxation dynamic of photogenerated charge carriers. These findings reveal that the annealing process is an effective strategy to control not only the morphology but also the optoelectrical properties of GB defects, and the dynamic of ion migration. Understanding the origin of photoelectric activity in this material allows for designing and engineering optoelectronic QD devices with enhanced functionality.

6.
Small ; 19(17): e2207181, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36693792

RESUMEN

Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.

7.
Small ; : e2304369, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715070

RESUMEN

High-magnetization materials play crucial roles in various applications. However, the past few decades have witnessed a stagnation in the discovery of new materials with high magnetization. In this work, Ni/NiO nanocomposites are fabricated by depositing Ni and NiO thin layers alternately, followed by annealing at specific temperatures. Both the as-deposited samples and those annealed at 373 K exhibit low magnetization. However, the samples annealed at 473 K exhibit a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3 ). Material characterizations indicate that the composite comprises NiO nanoclusters of size 1-2 nm embedded in the Ni matrix. This nanoclustered NiO is primarily responsible for the high magnetization, as confirmed by density functional theory calculations. The calculations also indicate that the NiO clusters are ferromagnetically coupled with Ni, resulting in enhanced magnetization. This work demonstrates a new route toward developing artificial high-magnetization materials using the high magnetic moments of nanoclustered antiferromagnetic materials.

8.
Small ; 18(38): e2203311, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35989093

RESUMEN

Metal-halide perovskites have drawn profuse attention during the past decade, owing to their excellent electrical and optical properties, facile synthesis, efficient energy conversion, and so on. Meanwhile, the development of information storage technologies and digital communications has fueled the demand for novel semiconductor materials. Low-dimensional perovskites have offered a new force to propel the developments of the memory field due to the excellent physical and electrical properties associated with the reduced dimensionality. In this review, the mechanisms, properties, as well as stability and performance of low-dimensional perovskite memories, involving both molecular-level perovskites and structure-level nanostructures, are comprehensively reviewed. The property-performance correlation is discussed in-depth, aiming to present effective strategies for designing memory devices based on this new class of high-performance materials. Finally, the existing challenges and future opportunities are presented.

9.
Small ; 18(21): e2200847, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35484474

RESUMEN

Hybrid halide perovskites have emerged as highly promising photovoltaic materials because of their exceptional optoelectronic properties, which are often optimized via compositional engineering like mixing halides. It is well established that hybrid perovskites undergo a series of structural phase transitions as temperature varies. In this work, the authors find that phase transitions are substantially suppressed in mixed-halide hybrid perovskite single crystals of MAPbI3-x Brx (MA = CH3 NH3 + and x = 1 or 2) using a complementary suite of diffraction and spectroscopic techniques. Furthermore, as a general behavior, multiple crystallographic phases coexist in mixed-halide perovskites over a wide temperature range, and a slightly distorted monoclinic phase, hitherto unreported for hybrid perovskites, is dominant at temperatures above 100 K. The anomalous structural evolution is correlated with the glassy behavior of organic cations and optical phonons in mixed-halide perovskites. This work demonstrates the complex interplay between composition engineering and lattice dynamics in hybrid perovskites, shedding new light on their unique properties.

10.
J Child Psychol Psychiatry ; 63(11): 1234-1242, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36001767

RESUMEN

BACKGROUND: Youths disengaged from the education system and labour force (i.e. 'Not in Education, Employment, or Training' or 'NEET') are often at reduced capacity to flourish and thrive as adults. Developmental precursors to NEET status may extend back to temperamental features, though this - and possible mediators of such associations such as attention deficit hyperactivity (ADHD) symptoms and antisocial behaviours (ASB) - have yet to be directly tested. This study investigates if i) difficult temperament in toddlerhood associates with NEET status in adulthood and ii) different subdomains of ADHD (i.e. hyperactivity-impulsivity vs. inattention) in late childhood and ASB in adolescence partially explain this pathway. METHODS: Participants were 6,240 mother-child dyads (60.7% female) from the Avon Longitudinal Study of Parents and Children. Mothers reported on their child's (a) difficult temperament (i.e. mood, intensity and adaptability) at age 2 and (b) ADHD symptoms at ages 8 and 10. Participants reported their own ASB at age 14 and NEET status in adulthood (ages 18, 20, 22 and 23). RESULTS: First, higher levels of difficult temperament in toddlerhood directly associated with an increased probability of being NEET in adulthood. Second, this effect was carried through hyperactivity-impulsivity, but not inattention, in late childhood, and ASB in adolescence; this demonstrates differential contribution to the pathway between the ADHD dimensions, with symptoms of hyperactivity-impulsivity playing a prominent role. CONCLUSIONS: Early difficult temperament is a vulnerability factor for NEET status in adulthood. Our findings suggest that one developmental pathway for this vulnerability manifests through increased hyperactivity-impulsivity in childhood and ASB in adolescence. Of note, difficult temperament, as measured here, reflects difficulties in emotional and behavioural self-control (e.g. low adaptability and high intensity negative emotional expressions). Our results, therefore, suggest a prominent developmental role for lack of self-control from toddlerhood onwards in increasing risk for NEET.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Temperamento , Niño , Adolescente , Adulto , Humanos , Preescolar , Femenino , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Estudios Longitudinales , Escolaridad , Empleo
11.
Small ; 16(12): e1903173, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31441228

RESUMEN

Introducing ferromagnetism in transition metal dichalcogenides has attracted lots of attention due to the possible applications in spintronics devices. Generally, single magnetic element doping is used to introduce magnetism. However, mostly, weak ferromagnetism is observed. In this work, codoping of two kinds of transition metals (Nb and Co) into WSe2 is used to study its magnetic properties. In detail, single crystal WSe2 is codoped with 4 at% Co and various concentrations of Nb by employing the physical ion implantation method. Raman, X-ray diffraction and X-ray photoelectron spectroscopy results reveal the effective substitutional doping of implanted elements (Co and Nb). Magnetic measurements illustrate that both un-doped and 4 at% Co doped WSe2 show weak ferromagnetism whereas magnetization is strongly enhanced when Co and Nb are codoped into WSe2 . The magnetization is comparable with a ferromagnet, which may be attributed to Co, Nb doping and defects. In addition, a large coercivity of ≈1.2 kOe is observed in the 1 at% Nb-4 at% Co codoped WSe2 sample, which may be ascribed to the combined effect of doping-induced stress, defect-dictated pinning and anisotropy of NbSe bond owing to the charge transfer between Nb and Se ions.

12.
Nano Lett ; 18(2): 1253-1258, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29378142

RESUMEN

Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In2Se3, a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

13.
Small ; 14(9)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29320610

RESUMEN

Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

14.
Phys Chem Chem Phys ; 20(37): 23837-23846, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30204170

RESUMEN

Resistive random-access memory (ReRAM) is expected to be the next-generation non-volatile memory device because of its fast operation speed and low power consumption. Switching media in most ReMAM are oxides which are rigid and require high-temperature processing. Here, we review two emerging types of low-cost solution-processed ReRAMs with sandwich structures: one is hybrid nanocomposites with charge-trapping nanoparticles (NPs) embedded in a polymer matrix, and the other is hybrid halide perovskites which have been intensively investigated recently for optoelectronic applications. We will review the recent developments in materials selection, device performance and operation mechanisms. Resistive switching in hybrid materials and composites is ubiquitous because of the abundant existence of charge-trapping defects and interfaces. The future challenges and potential breakthroughs will also be outlined.

15.
Angew Chem Int Ed Engl ; 57(35): 11218-11222, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29956876

RESUMEN

Isoporous block copolymer (BCP) films have received exponential interest as highly selective membranes, stemming from their unique morphological features, but their applications in functional devices remain to be realized. Now single-walled carbon nanotubes (CNTs) were efficiently incorporated into isoporous block copolymer films for chemiresistive sensing at room temperature. Leveraging the efficient charge extraction ability of CNTs together with nanochannel arrays aligned perpendicular to the surface of the films, an ultrafast response time of 0.3 s was achieved for humidity detection with a sensor response of about 800 on changing humidity from 10 % to 95 %. Furthermore, the sensor also responds to various organic vapors, underscoring its promising detection capability.

16.
Angew Chem Int Ed Engl ; 57(38): 12360-12364, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-29923667

RESUMEN

Ammonia, a key precursor for fertilizer production, convenient hydrogen carrier, and emerging clean fuel, plays a pivotal role in sustaining life on Earth. Currently, the main route for NH3 synthesis is by the heterogeneous catalytic Haber-Bosch process (N2 +3 H2 →2 NH3 ), which proceeds under extreme conditions of temperature and pressure with a very large carbon footprint. Herein we report that a pristine nitrogen-doped nanoporous graphitic carbon membrane (NCM) can electrochemically convert N2 into NH3 in an acidic aqueous solution under ambient conditions. The Faradaic efficiency and rate of production of NH3 on the NCM electrode reach 5.2 % and 0.08 g m-2 h-1 , respectively. Functionalization of the NCM with Au nanoparticles dramatically enhances these performance metrics to 22 % and 0.36 g m-2 h-1 , respectively. As this system offers the potential to be scaled to industrial levels it is highly likely that it might displace the century-old Haber-Bosch process.

17.
Small ; 13(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27706914

RESUMEN

As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm-2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides.

18.
Opt Lett ; 42(18): 3618-3621, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914916

RESUMEN

We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ∼89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

19.
Nano Lett ; 16(7): 4158-65, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27254592

RESUMEN

Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

20.
Nano Lett ; 16(7): 4417-23, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27228321

RESUMEN

Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA