RESUMEN
Intrahepatic cholangiocarcinoma (ICC) is a universally lethal malignancy with increasing incidence. However, ICC patients receive limited benefits from current drugs; therefore, we must urgently explore new drugs for treating ICC. Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, can suppress cancer cell growth via numerous mechanisms and have therapeutic effects on liver-related diseases. However, the impact of quinolizidine alkaloids on intrahepatic cholangiocarcinoma has not been fully studied. In this article, the in vitro anti-ICC activities of six natural quinolizidine alkaloids were explored. Aloperine was the most potent antitumor compound among the tested quinolizidine alkaloids, and it preferentially inhibited RBE cells rather than HCCC-9810 cells. Mechanistically, aloperine can potentially decrease glutamate content by inhibiting the hydrolysis of glutamine, reducing D-2-hydroxyglutarate levels and, consequently, leading to preferential growth inhibition in isocitrate dehydrogenase (IDH)-mutant ICC cells. In addition, aloperine preferentially resensitizes RBE cells to 5-fluorouracil, AGI-5198 and olaparib. This article demonstrates that aloperine shows preferential antitumor effects in intrahepatic cholangiocarcinoma cells harboring the mutant IDH1 by decreasing D-2-hydroxyglutarate, suggesting that aloperine could be used as a lead compound or adjuvant chemotherapy drug to treat ICC harboring the mutant IDH.
Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Isocitrato Deshidrogenasa , Mutación , Piperidinas , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Piperidinas/farmacología , Antineoplásicos/farmacología , Quinolizidinas/farmacología , Proliferación Celular/efectos de los fármacosRESUMEN
Psoriasis is an incurable skin disease that develops in about two-thirds of patients before the age of 40 and requires lifelong treatment; its pathological mechanisms have not been fully elucidated. The core pathological process of psoriasis is epidermal thickening caused by the excessive proliferation of epidermal keratinocytes, which is similar to the key feature of cancer; the malignant proliferation of cancer cells causes tumor enlargement, suggesting that there is a certain degree of commonality between psoriasis and cancer. This article reviews the pathological mechanisms that are common to psoriasis and cancer, including the interaction between cell proliferation and an abnormal immune microenvironment, metabolic reprogramming, and epigenetic reprogramming. In addition, there are common therapeutic agents and drug targets between psoriasis and cancer. Thus, psoriasis and cancer share a common pathological mechanisms-drug targets-therapeutic agents framework. On this basis, it is proposed that investigating psoriasis from a cancer perspective is beneficial to enriching the research strategies related to psoriasis.
Asunto(s)
Neoplasias , Psoriasis , Humanos , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Piel , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Epidermis , Proliferación Celular , Microambiente TumoralRESUMEN
Latent HIV is a key factor that makes AIDS difficult to cure. Highly effective and specific latent HIV activators can effectively activate latent HIV, and then combined with antiretroviral therapy to achieve a functional cure of AIDS. Here, four sesquiterpenes (1-4) including a new one (1), five flavonoids (5-9) including three biflavonoid structures, and two lignans (10 and 11) were obtained from the roots of Wikstroemia chamaedaphne. Their structures were elucidated through comprehensive spectroscopic analyses. The absolute configuration of 1 was determined by experimental electronic circular dichroism. NH2 cell model was used to test the activity of these 11 compounds in activating latent HIV. Oleodaphnone (2) showed the latent HIV activation effect as well as the positive drug prostratin, and the activation effect was time- and concentration-dependent. Based on transcriptome analysis, the underlying mechanism was that oleodaphnone regulated the TNF, C-type lectin receptor, NF-κB, IL-17, MAPK, NOD-like receptor, JAK-Stat, FoxO, and Toll-like receptor signaling pathways. This study provides the basis for the potential development of oleodaphnone as an effective HIV latency-reversing agent.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Humanos , Activación Viral , Latencia del Virus , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , VIH-1/genética , Perfilación de la Expresión Génica , Linfocitos T CD4-Positivos/metabolismoRESUMEN
NAD(P)H is crucial for biosynthetic reactions and antioxidant functions. However, the current probes developed for detecting NAD(P)H in vivo require intratumoral injection, which limited their application for animal imaging. To address this issue, we have developed a liposoluble cationic probe, KC8, which exhibits excellent tumor-targeting ability and near-infrared (NIR) fluorescence after reaction with NAD(P)H. By using KC8, it was demonstrated for the first time that the level of NAD(P)H in the mitochondria of living colorectal cancer (CRC) cells was highly related to the abnormality of the p53. Furthermore, KC8 was successfully used to differentiate not only between tumor and normal tissue but also between tumors with p53 abnormality and normal tumors when administered intravenously. Finally, we evaluated tumor heterogeneity through two fluorescent channels after treating a tumor with 5-Fu. This study provides a new tool for real-time monitoring of the p53 abnormality of CRC cells.
Asunto(s)
Colorantes Fluorescentes , Neoplasias , Animales , NAD , Proteína p53 Supresora de Tumor , Neoplasias/diagnóstico , Diagnóstico por ImagenRESUMEN
BACKGROUND: Saikosaponin A (SSA) and albiflorin (AF) are major bioactive compounds of Radix Bupleuri and Radix Paeoniae alba respectively, which possess antidepressant effects in pharmacological experiments. However, whether SSA and AF have synergistic neuroprotective effects and the synergistic mechanisms are still unknown. METHODS AND RESULTS: The corticosterone-induced PC12 cells apoptosis model was employed to assess the neuroprotective effects of SSA and AF, and the synergistic effect was analyzed using three mathematical models. Meanwhile, cell metabolomics was used to detect the effects on metabolite regulation of SSA and AF. Furthermore, the key metabolites, metabolic enzymes, and cellular markers were verified by ELISA and Western blotting. The results showed that the combination of SSA and AF has a synergistic neuroprotective effect. Besides, the combination could regulate more metabolites than a single agent and possessed a stronger adjustment effect on metabolites. The TCA cycle was regulated by SSA and AF via improving mitochondrial function. The purine metabolism was regulated by SSA via inhibition xanthine oxidase activity and the glutamate metabolism was regulated by AF via inhibition glutaminase activity. Moreover, the oxidative stress induced by the purine metabolism was attenuated by SSA via a reduction in the ROS level. Additionally, the inflammation induced by the oxidative stress was attenuated by the SSA and AF via inhibition of the NLRP3 protein expression. CONCLUSIONS: This study for the first time demonstrated the synergistic neuroprotective effects of SSA and AF, and the synergistic mechanisms were involved in metabolic disorders regulation and neuroinflammation inhibition.
Asunto(s)
Enfermedades Metabólicas , Fármacos Neuroprotectores , Animales , Apoptosis , Hidrocarburos Aromáticos con Puentes , Corticosterona/farmacología , Humanos , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Ácido Oleanólico/análogos & derivados , Células PC12 , Purinas/farmacología , Ratas , SaponinasRESUMEN
The passage number is an important factor when designing the cell line-based experiment. Although HT29 cells were widely used in the laboratory for colorectal cancer studies, the impact of cell passage number on the HT29 cells was still unknown. In this study, phenotypic assay and metabolomic approach were applied to analyze the systemic effects of passage numbers (passage 4, 10, and 16) on the HT29 cells. The results showed that the increased cell passage number affected the cell cycle distribution and also decreased the proliferation and migration ability of HT29 cells. The metabolomic analysis coupled with heatmap and hierarchical cluster analysis showed obvious metabolome difference among the cells with different passage numbers, which was related with 61 differential metabolites. Three metabolic pathways were determined as the key pathways, and arginine participated in two of them. In addition, it was found that arginine supplementation could inhibit the proliferation ability of HT29 cells in vitro, and a synergistic effect existed between arginine and cisplatin. In conclusion, this study not only revealed the influence of passage numbers on the HT29 cell but also provided an important reference that arginine has the potential role to be developed as the cisplatin therapeutic adjuvant.
Asunto(s)
Cisplatino , Metabolómica , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Células HT29 , HumanosRESUMEN
Unlike other DNA topoisomerase II (topo II) inhibitors, our recently identified acridone derivative E17 exerted strong cytotoxic activity by inhibiting topo II without causing topo II degradation and DNA damage, which promoted us to explore more analogues of E17 by expanding its chemical diversification and enrich the structure-activity relationship (SAR) outcomes of acridone-oriented chemotypes. To achieve this goal, 42 novel acridone derivatives were synthesized and evaluated for their antiproliferative efficacies. SAR investigations revealed that orientation and spatial topology of R3 substituents make greater contributions to the bioactivity, exemplified by compounds E24, E25 and E27, which has provided valuable information for guiding further development of acridone derivatives as promising drug candidates.
Asunto(s)
Acridonas/farmacología , Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Acridonas/síntesis química , Acridonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Células Tumorales CultivadasRESUMEN
Wnt/ß-catenin signalling is frequently activated in colorectal cancer, in which nuclear ß-catenin accumulation contributes to tumour initiation and progression. However, therapeutic agents in clinical use targeting this pathway are lacking. In this report, we describe the synthesis of novel stemona alkaloid analogues and their biological evaluation, among which compound 3 was identified to efficiently inhibit various CRC cells, including 5-fluorouracil-resistant CRC cells. Mechanistically, this study revealed that compound 3 reduced the protein level of ß-catenin without affecting its mRNA level, which suggests an alternative mechanism for ß-catenin degradation. The expression of downstream proteins, including c-myc, survivin, and cyclin D1, was also significantly inhibited, even in Wnt-activated CRC cells. Briefly, our data highlight the potential of compound 3 as a destabilizer of ß-catenin for the treatment of CRC patients.
Asunto(s)
Alcaloides/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Descubrimiento de Drogas , Resistencia a Antineoplásicos/efectos de los fármacos , Stemonaceae/química , beta Catenina/antagonistas & inhibidores , Alcaloides/síntesis química , Alcaloides/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismoRESUMEN
The discovery of efficient and specific HIV-latency-reversing agents is critical for HIV therapy. Here, we developed wikstroelide E, a daphnane diterpene from the buds of Wikstroemia chamaedaphne, as a potential HIV-latency-reversing agent that is 2500-fold more potent than the drug prostratin. Based on transcriptome analysis, the underlying mechanism was that wikstroelide E regulated the MAPK, PI3K-Akt, JAK-Stat, TNF, and NF-κB signaling pathways. We clearly demonstrated that wikstroelide E reversed latent HIV infection by activating PKC-NF-κB signals, serving as a proxy for verifying the transcriptome data. Strikingly, the Tat protein contributes to the robust activation of latent HIV in wikstroelide-E-treated cells, producing an unexpected latency-reversing effect against latent HIV. This study provides the basis for the potential development of wikstroelide E as an effective HIV-latency-reversing agent.
Asunto(s)
Antivirales/farmacología , Diterpenos/farmacología , VIH-1/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Wikstroemia/química , Antivirales/aislamiento & purificación , Diterpenos/aislamiento & purificación , Perfilación de la Expresión Génica , Humanos , Células Jurkat , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacologíaRESUMEN
A series of novel 2-arylbenzimidazoles have been designed, synthesized and evaluated for their inhibitory activity against IDH2 R140Q mutant. The preliminary results indicated that four compounds 7b, 7c, 7m and 7r displayed the potent inhibitory activity against IDH2 R140Q mutant. Among them, compound 7c showed the highest inhibitory activity, with the IC50 value of 0.26 µM, which was more active than positive control enasidenib. The exquisite selectivity of 7c for IDH2 R140Q mutant isoform was demonstrated by the poor activity against the IDH1 R132C mutant, IDH1 R132H mutant, wild-type IDH1, IDH2 R172K mutant and the wild-type IDH2.
Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Diseño de Fármacos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Antineoplásicos/química , Bencimidazoles/química , Dominio Catalítico , Modelos Moleculares , Estructura Molecular , Mutación , Conformación Proteica , Relación Estructura-ActividadRESUMEN
Topo II inhibitors, e.g. etoposide, doxorubicin and mitoxantrone, etc., which exert their functions by trapping the covalent 'topo II-DNA cleavable complex' via intercalation into DNA base pairs, leading to DNA damage and degradation of topo II, and inducing decline of cell sensitivity and corresponding multidrug resistance (MDR). E17 is a recently identified topo II inhibitor in our lab which has validated to possess a strong topo II inhibitory activity on cell viability, colony formation, and cell migration. Especially, E17 can trigger G2/M cell cycle arrest through inhibiting chromosome condensation without causing obvious DNA damage in colorectal cancer (CRC) HCT116â¯cell. E17 can also induce the accumulation of topo II-DNA complex without leading to degradation of topo II, which was different from topo II inhibitors VP16 or ICRF-187, suggesting E17 might be a potential lead for further development by serving as a strong topo II inhibitor.
Asunto(s)
Antineoplásicos/farmacología , Cromosomas/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromosomas/metabolismo , Cromosomas/ultraestructura , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Descubrimiento de Drogas , Células HCT116 , Células HeLa , Humanos , Inhibidores de Topoisomerasa II/químicaRESUMEN
Astragalus radix (radix) have been frequently used for clinical application in China, and the herb residues of radix turn out to be a waste of resources. To escape from this, the medicine value of radix herb residues is mined in this article. We isolated hemicellulose polysaccharide AX-I-3b from radix herb residues by fractional extraction. Monosaccharide-composition analysis revealed that AX-I-3b consisted of arabinose, xylose, and glucose with a molar ratio of 10.4:79.3:1.1. Methylation, NMR and FT-IR analyses showed that AX-I-3b monosaccharide residue was linked as follows: â2,3,4)-ß-d-Xylp-(1â, â4)-ß-d-Arap-(1â, â4)-ß-d-Glcp-(1â. Then, we found that AX-I-3b exhibited antitumor activity against lung cancer in vitro and vivo through MTT assay and xenograft tumor model. Mechanistically, AX-I-3b induced apoptosis in lung cancer cells and xenograft tumors, which is evidenced by the up-regulation of p53, Bax and cleaved caspase-3, and the down-regulation of Bcl-2. Moreover, AX-I-3b synergistically improved the therapeutic ability of cisplatin in xenograft tumors model. Furthermore, AX-I-3b treatment effectively improved the immune organ index, the percentage of spleen lymphocyte subsets and serum cytokine levels in lung cancer mice, supporting that AX-I-3b showed immunomodulatory activity. In conclusion, our results identified AX-I-3b as an antitumor and immunomodulatory agent, providing a new insight into the reutilization of radix herb residue.
Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Planta del Astrágalo/química , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Extractos Vegetales/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Factores Inmunológicos/química , Ratones , Polisacáridos/química , Análisis EspectralRESUMEN
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. New understandings about this disease are urgently required to guide clinical therapies. In this study, we focused on the effects of the small molecule PMN on CRC cells. PMN dose-dependently inhibited CRC cell proliferation through inducing mitotic arrest and apoptosis. PMN induced mitotic arrest via the disruption of spindle apparatus by inhibiting microtubule polymerization. PMN-induced mitotic arrest resulted in apoptosis and p53 upregulation. Furthermore, p53 upregulation sensitized PMN-induced mitotic cells to apoptosis. This study deepens the understanding of the effects of p53 on the response of CRC cells to PMN, providing the basis for the potential development of PMN as a lead compound of microtubule-destabilizers for p53-positive CRC treatment.
Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Mitosis/efectos de los fármacos , Naftoles/farmacología , Pirimidinas/farmacología , Tubulina (Proteína)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Naftoles/química , Polimerizacion , Pirimidinas/químicaRESUMEN
BACKGROUND: Mitosis, the most dramatic event in the cell cycle, involves the reorganization of virtually all cellular components. Antimitotic agents are useful for dissecting the mechanism of this reorganization. Previously, we found that the small molecule CS1 accumulates cells in G2/M phase [1], but the mechanism of its action remains unknown. METHODS: Cell cycle analysis, live cell imaging and nuclear staining were used. Chromosomal morphology was detected by chromosome spreading. The effects of CS1 on microtubules were confirmed by tubulin polymerization, colchicine tubulin-binding, cellular tubulin polymerization and immunofluorescence assays and by analysis of microtubule dynamics and molecular modeling. Histone phosphoproteomics was performed using mass spectrometry. Cell signaling cascades were analyzed using immunofluorescence, immunoprecipitation, immunoblotting, siRNA knockdown and chemical inhibition of specific proteins. RESULTS: The small molecule CS1 was shown to be an antimitotic agent. CS1 potently inhibited microtubule polymerization via interaction with the colchicine-binding pocket of tubulin in vitro and inhibited the formation of the spindle apparatus by reducing the bulk of growing microtubules in HeLa cells, which led to activation of the spindle assembly checkpoint (SAC) and mitotic arrest of HeLa cells. Compared with colchicine, CS1 impaired the progression of sister chromatid resolution independent of cohesin dissociation, and this was reversed by the removal of CS1. Additionally, CS1 induced unique histone phosphorylation patterns distinct from those induced by colchicine. CONCLUSIONS AND SIGNIFICANCE: CS1 is a unique antimitotic small molecule and a powerful tool with unprecedented value over colchicine that makes it possible to specifically and conditionally perturb mitotic progression.
Asunto(s)
Antineoplásicos/farmacología , Cromátides/metabolismo , Fase G2/efectos de los fármacos , Mitosis/efectos de los fármacos , Inhibidores de Topoisomerasa/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Células HeLa , Humanos , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Inhibidores de Topoisomerasa/síntesis química , Inhibidores de Topoisomerasa/químicaRESUMEN
Ten new pentangular polyphenols, namely amexanthomycins A-J (1-10) were isolated from the strain Amycolatopsis mediterranei S699∆rifA constructed by deleting the polyketide synthase genes responsible for the biosynthesis of rifamycins. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopic data and high-resolution ESIMS. Amexanthomycins A-C (1-3) showed inhibitory activity against human DNA topoisomerases.
Asunto(s)
Actinomycetales/química , Polifenoles/biosíntesis , Polifenoles/química , Actinomycetales/genética , Clonación Molecular , Genes Bacterianos , Humanos , Complejos Multienzimáticos/metabolismo , Familia de Multigenes , Sistemas de Lectura Abierta , Sintasas Poliquetidas/genética , Polifenoles/aislamiento & purificación , Análisis de Secuencia de ADN , Inhibidores de Topoisomerasa/química , Inhibidores de Topoisomerasa/aislamiento & purificaciónRESUMEN
Accumulation of acylcarnitines is a characteristic feature of various metabolic disorders affecting fatty acid metabolism. Despite extensive research, no specific molecules have been identified to induce ferroptosis through the regulation of acylcarnitine metabolism. In this study, acylcarnitine accumulation was identified based on cell metabolomics study after the treatment with Stemona alkaloid derivative (SA-11), which was proved to induce ferroptosis in our previous research. Furthermore, the CPT-1 level was proved to significantly increase, while the CPT-2 level indicated no significant difference, which resulted in the accumulation of acylcarnitine. Besides, the ferroptosis-inducing ability of SA-11 was significantly enhanced by the addition of exogenous acylcarnitine, presumably due to the production of additional ROS. This hypothesis was corroborated by the observation of increased ROS levels in HCT-116 cells treated with SA-11 compared to the control group. These findings suggest that targeting acylcarnitine metabolism, particularly through CPT-1, may offer a novel therapeutic strategy for cancer treatment by enhancing ferroptosis induction.
RESUMEN
Theranostic probes, combining diagnostic and treatment capabilities, have emerged as promising tools in tumor precision medicine. However, existing probes with constant fluorescence and photothermal activity can result in low signal-to-background ratios and phototoxicity. In this study, we introduced CM-Croc, a novel probe comprised of chromene and croconaine, selectively triggered by thiol. CM-Croc exhibited turn-on fluorescence and released croconaine for photothermal therapy. The croconaine moiety possesses high photothermal conversion efficiency up to 55%. Besides, it demonstrated potent activity against various cancer cell lines at low micromolar concentrations, including drug-resistant variants, through enhanced photothermal therapy combined with the ferroptosis effect. What's more, CM-Croc was proved to inhibit the activity of GPX4 to induce ferroptosis. Finally, CM-Croc was demonstrated to be the first croconaine-derived SOP, which targeted tumors and significantly inhibited tumor growth in vivo following intravenous administration with irradiation. This study showed CM-Croc's potential for enhancing tumor precision medicine.
RESUMEN
BACKGROUND: Helicobacter pylori (H. pylori) infection is a major risk factor for chronic gastritis, affecting approximately half of the global population. H. pylori eradication is a popular treatment method for H. pylori-positive chronic gastritis, but its mechanism remains unclear. Urinary metabolomics has been used to elucidate the mechanisms of gastric disease treatment. However, no clinical study has been conducted on urinary metabolomics of chronic gastritis. AIM: To elucidate the urinary metabolic profiles during H. pylori eradication in patients with chronic gastritis. METHODS: We applied LC-MS-based metabolomics and network pharmacology to investigate the relationships between urinary metabolites and H. pylori-positive chronic gastritis via a clinical follow-up study. RESULTS: Our study revealed the different urinary metabolic profiles of H. pylori-positive chronic gastritis before and after H. pylori eradication. The metabolites regulated by H. pylori eradication therapy include cis-aconitic acid, isocitric acid, citric acid, L-tyrosine, L-phenylalanine, L-tryptophan, and hippuric acid, which were involved in four metabolic pathways: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate metabolism. Integrated metabolomics and network pharmacology revealed that MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO were the key proteins involved in the biological progress of H. pylori eradication in chronic gastritis. CONCLUSION: Our research provides a new perspective for exploring the significance of urinary metabolites in evaluating the treatment and prognosis of H. pylori-positive chronic gastritis patients.
RESUMEN
Transcription factor p53 regulates cellular responses to environmental perturbations via the transcriptional activation of downstream target genes. Inappropriate p53 activation can trigger abnormal cellular responses, therefore leading to acute or chronic tissue damage, human developmental syndromes, and neurodegenerative diseases. Antagonists of p53 transcriptional activity provide prospective therapeutic applications and molecular probes. In this article, we identified five 3-phenylquinoline derivatives as potential p53 inhibitors through screening a chemical library consisting of 120 compounds, in which PQ1 was the most active compound. PQ1 had no effect on p53 protein levels and decreased the expression of p53 target gene p21. PQ1 thermally stabilizes the wild-type p53 protein. Further, transcriptomics confirmed that PQ1 exposure generated a similar regulatory effect to transcription profiles with a reported p53 transcriptional inhibitor pifithrin-α. However, compared to pifithrin-α, PQ1 increased the sensitivity of SW480 cells to 5FU. Taken together, PQ1 was a novel antagonist of p53 transcriptional activity. We propose that PQ1 could be developed as a chemical tool to pinpoint the physiological functions of p53 and a novel lead compound for targeting dysfunctional p53 activation.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Colorectal cancer (CRC) is one type of worldwide popular and refractory tumors. Compound Kushen Injection (CKI) is a frequently applied traditional Chinese medicine formula as an adjuvant drug for the chemotherapy of CRC. P53 is the most commonly mutated gene in CRC, accounting for the development, malignant and prognosis progression of CRC. However, effect of CKI on the therapeutic efficacy of p53-mutant CRC remains understood. Besides, the combined efficacy of different chemotherapeutics drugs in combination with CKI for CRC treatment is rarely concerned. AIM OF STUDY: To investigate the combined efficacy of the CKI-derived combination strategies in the p53-mutant CRC. MATERIALS AND METHODS: Two CRC cell lines HCT116 and SW480 cells, which respectively harbor wild-type p53 and p53-R273H/P309S mutant, were applied. Cisplatin (Cis) and 5-fluorouracil (5FU) were combined chemotherapeutics drugs of CKI-derived combination strategies in this article. In vitro antitumor activity was detected by sulforhodamine B (SRB) assay and colony formation assay. Combenefit soft was applied to evaluate the synergetic/antagonistic effect of drug combination. Lentivirus-mediated overexpression method was used to generate a set of p53-mutant and wild-type CRC cell lines harboring identical genomes. Transcriptomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were applied to predicate the underlying mechanism of synergetic interaction between drug combination. Western blot was performed to verify predicated pathways contributing to the synergy of drug combination. RESULTS: CKI preferentially combined with Cis but not 5FU, to produce a synergistical antitumor efficiency for p53-R273H/P309S mutant, rather than wild-type p53 harboring CRC cells. The combination of CKI and Cis strongly reprogrammed the transcriptional profiles of SW480 cells. Cytokine-cytokine receptor interaction pathway was a key pathway involved in cooperativity between CKI and Cis in SW480 cells. Mechanistically, compared to that Cis individually triggered necroptosis, the co-treatment of CKI and Cis reinforced the cell death of SW480 cells in a possible synergistic manner by inducing extrinsic apoptosis pathway. CONCLUSION: This article provides a novel perspective into the precision clinical application of CKI-derived combination therapy programs of CRC based on genetic variation and the classes of chemotherapeutics drugs.