Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Am Chem Soc ; 146(22): 15479-15487, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780095

RESUMEN

The development of efficient and low-cost catalysts is essential for photocatalysis; however, the intrinsically low photocatalytic efficiency as well as the difficulty in using and recycling photocatalysts in powder morphology greatly limit their practical performance. Herein, we describe quasi-homogeneous photocatalysis to overcome these two limitations by constructing ultrastiff, hierarchically porous, and photoactive aerogels of conjugated microporous polymers (CMPs). The CMP aerogels exhibit low density but high stiffness beyond 105 m2 s-2, outperforming most low-density materials. Extraordinary stiffness ensures their use as robust scaffolds for scaled photocatalysis and recycling without damage at the macroscopic level. A challenging but desirable reaction for direct deaminative borylation is demonstrated using CMP aerogel-based quasi-homogeneous photocatalysis with gram-scale productivity and record-high efficiency under ambient conditions. Combined terahertz and transient absorption spectroscopic studies unveil the generation of high-mobility free carriers and long-lived excitonic species in the CMP aerogels, underlying the observed superior catalytic performance.

2.
Nano Lett ; 21(8): 3487-3494, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33848175

RESUMEN

Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm-2 and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.


Asunto(s)
Nanopartículas , Colorantes Fluorescentes , Rayos Láser , Microscopía Fluorescente , Dióxido de Silicio
3.
J Am Chem Soc ; 143(15): 5691-5697, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843229

RESUMEN

Singlet fission (SF), the conversion of one high-energy singlet to two low-energy triplets, provides the potential to increase the efficiency of photovoltaic devices. In the SF chromophores with C2h symmetry, exemplified by polyenes, singlet-to-triplet conversion generally involves a low-lying 21Ag dark state, which serves as either a multiexciton (ME) intermediate to promote the SF process or a parasitic trap state to shunt excited-state populations via internal conversion. This controversial behavior calls for a deep understanding of dark-state-related photophysics involving the higher-lying singlet state. However, the optical "dark" and "transient" nature of these dark states and strong correlation feature of double exciton species make their characterization and interpretation challenging from both experimental and computational perspectives. In the present work combining transient spectroscopy and multireference electronic structure calculations (XDW-CASPT2), we addressed a new photophysical model, i.e., a high-lying 31Ag dark-state-mediated ultrafast SF process in the benzodipyrrolidone (BDPP) skeleton. Such a 31Ag dark state with distinctive double excitation character, described as the ME state, could be populated from the initial 11Bu bright state on an ultrafast time scale given the quasi-degeneracy and intersection of the two electronic states. Furthermore, the suitable optical band gap and triplet energy, high triplet yield, and excellent photostability render BDPP a promising SF candidate for photovoltaic devices. These results not only enrich the arsenal of SF materials but also shed new insights into the understanding of dark-state-related photophysics, which could promote the development of new SF-active materials.

4.
Angew Chem Int Ed Engl ; 60(12): 6344-6350, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33350552

RESUMEN

Large-area 2D cocrystals with strong near-infrared (NIR) absorption have been designed and prepared. Driven by the intermolecular charge-transfer (CT) interactions, zinc tetraphenylporphyrin (donor) and C60 (acceptor) self-assemble into a NIR cocrystal with absorption wavelength up to 1080 nm. By tailoring the growth solvents and processes, the cocrystal morphologies can be tuned from 1D nanowires, 2D nanosheets to large-area 2D cocrystal films with length reaching several millimeters. Owing to the highly ordered donor-acceptor arrangement, the CT absorption in the 2D cocrystals is enhanced and is comparable to singlet absorption. The uniform 2D cocrystals, with enhanced CT absorption in the NIR region, displays a high responsivity of 2424 mA W-1 to NIR light and a fast response time of 0.6 s. The excellent device performance is attributed to the generation of long-lived free charge carriers as revealed by transient absorption spectroscopy and optimization of device configuration.

5.
Angew Chem Int Ed Engl ; 60(6): 2924-2928, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33107179

RESUMEN

Synthetic routes for heteroatom-containing polycyclic aromatic hydrocarbons (H-PAHs) with alkyl and aryl substitution are demonstrated. Three H-PAHs, including heteroatom-containing rubicenes (H-rubicenes), angular-benzothiophenes (ABTs), and indenothiophene (IDTs) were successfully synthesized by two key steps, including polysubstituted olefin formation and cyclization. Specifically, ABT and H-rubicenes were comprehensively investigated by single-crystal X-ray diffraction, NMR spectroscopy, UV-vis absorption, cyclic voltammetry, transient absorption, and single-crystal OFET measurements.

6.
J Am Chem Soc ; 142(23): 10235-10239, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32437140

RESUMEN

Singlet fission (SF) materials hold the potential to increase the power conversion efficiency of solar cells by reducing the thermalization of high-energy excited states. The major hurdle in realizing this potential is the limited scope of SF-active materials with high fission efficiency, suitable energy levels, and sufficient chemical stability. Herein, using theoretical calculation and time-resolved spectroscopy, we developed a highly stable SF material based on dipyrrolonaphthyridinedione (DPND), a pyrrole-fused cross-conjugated skeleton with a distinctive adaptive aromaticity (dual aromaticity) character. The embedded pyrrole ring with 4n+2 π-electron features aromaticity in the ground state, while the dipole resonance of the amide bonds promotes a 4n π-electron Baird's aromaticity in the triplet state. Such an adaptive aromaticity renders the molecule efficient for the SF process [E(S1) ≥ 2E(T1)] without compromising its stability. Up to 173% triplet yield, strong blue-green light absorption, and suitable triplet energy of 1.2 eV, as well as excellent stability, make DPND a promising SF sensitizer toward practical applications.

7.
J Am Chem Soc ; 142(42): 17892-17896, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33044060

RESUMEN

The exploitation of singlet fission (SF) in photovoltaic devices is restricted by the limited number of SF materials available and the conflicting requirement of intermolecular interactions to satisfy both efficient SF and subsequent triplet extraction. Intramolecular SF (iSF) represents an emerging alternative and may prove simpler to implement in devices. On account of the excellent chemical structure tunability and solution processability, conjugated polymers have emerged as promising candidates for iSF materials despite being largely underexplored. It remains a significant challenge to develop SF-capable conjugated polymers and achieve efficient dissociation of the formed triplet pairs simultaneously. In this contribution, we present a new iSF material in a para-azaquinodimethane-based quinoidal conjugated polymer. Using transient optical techniques, we show that an ultrafast iSF process dominates the deactivation of the excited state in such polymer, featuring ultrafast population (<1 ps) and stepwise dissociation of triplet pairs. Notably, these multiexciton states could further diffuse apart to produce long-lived free triplets (tens of µs) in strongly coupled aggregates in solid thin film. Such findings not only introduce a new iSF-active conjugated polymer to the rare SF material family but also shed unique insight into interchain interaction-promoted triplet pair dissociation in aggregates of conjugated polymers, thus openning new avenues for developing next-generation SF-based photovoltaic materials.

8.
Macromol Rapid Commun ; 41(23): e2000393, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33089640

RESUMEN

Obtaining a large open-circuit voltage (VOC ) and high short-circuit current density (JSC ) simultaneously is important in improving power conversion efficiency (PCE) of organic photovoltaics. The ternary strategy with using a higher lowest unoccupied molecular orbital (LUMO) level nonfullerene acceptor (NFA) guest can achieve increased VOC , yet JSC is decreased or maintained, so it's still a challenge to offer increased VOC and JSC values concurrently via the newly presented VOC -increased ternary strategy. To overcome this issue, a new narrow bandgap NFA TT-S-4F is reported by introducing 3,6-dimethoxylthieno[3,2-b]thiophene (TT) as π-spacers to connect electron-rich core with terminal groups, so as to upshift the LUMO level and extend π-system. When adding 10% TT-S-4F into binary system based on PTB7-Th:IEICO-4F, the higher-LUMO-level of TT-S-4F, the increased charge mobilities, the reduced trap-assisted combination loss, and a finer nanofiber structure and increased phase separation size are obtained, which simultaneously promotes JSC , VOC , and fill factor (FF), thus obtaining an optimal PCE (12.5% vs 11.5%). This work illustrates that an extending conjugated backbone with large π-spacers and inclusion of alkylthiophenyl side-chains is a concept to synthesize NFA guests for use on the VOC -increased ternary strategy that enables to realize simultaneously increased JSC , VOC , and FF.


Asunto(s)
Nanofibras , Energía Solar , Suministros de Energía Eléctrica , Polímeros , Tiofenos
9.
Angew Chem Int Ed Engl ; 59(5): 2003-2007, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31729139

RESUMEN

Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time-resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1 TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene-functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF-capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers.

10.
J Chem Phys ; 151(12): 124701, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575178

RESUMEN

Singlet fission (SF), a spin-allowed multiexciton generation process, experienced renewed interest in the last decade due to its potential to increase the efficiency of photovoltaic devices. The hurdles now lie in the limited range of SF-capable materials and demanding morphology requirement for an efficient fission process. Although primary fission to yield triplet pair (1TT) can occur independently of film morphology in intramolecular singlet fission (iSF) materials, the separation of the 1TT state has been shown to be highly dependent on the packing motif and morphologies. In this work, we have demonstrated that both iSF and triplet pair separation processes took place irrelevant of molecular order and/or film morphology in a series of pentalene compounds. With the >180% fission efficiency, the suitable triplet energy levels, and the long lifetime of the triplet excitons, these iSF systems can be integrated into practical photovoltaic application.

11.
Chemistry ; 24(8): 1801-1805, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29281148

RESUMEN

Organic room-temperature phosphorescence (ORTP), when combined with external stimuli-responsive capability, is very attractive for sensors and bio-imaging devices, but remains challenging. Herein, by doping two ß-iminoenamine-BF2 derivatives (S-2CN and S-2I) into a 4-iodoaniline (I-Ph-NH2 ) crystalline matrix, the formation of S-2CN⋅⋅⋅I-Ph-NH2 and S-2I⋅⋅⋅I-Ph-NH2 halogen bonds leads to bright-red RTP emissions from these two host-guest doped crystals (hgDCs) with quantum efficiencies up to 13.43 % and 15.96 %, respectively. Upon treatment with HCl, the competition of I-Ph-NH2 ⋅HCl formation against S-2I⋅⋅⋅I-Ph-NH2 halogen bonding switches off the red RTP from S-2I/I-Ph-NH2 hgDCs, whereas the stable halogen-bonded S-2CN⋅⋅⋅I-Ph-NH2 ensures red RTP from S-2CN/I-Ph-NH2 hgDCs remains unchanged. A security protection luminescence pattern by using these different HCl-responsive RTP behaviors was designed.

12.
Angew Chem Int Ed Engl ; 57(26): 7748-7752, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29697899

RESUMEN

Miniaturized nanowire nanolasers of 3D perovskites feature a high gain coefficient; however, room-temperature optical gain and nanowire lasers from 2D layered perovskites have not been reported to date. A biomimetic approach is presented to construct an artificial ligh-harvesting system in mixed multiple quantum wells (QWs) of 2D-RPPs of (BA)2 (FA)n-1 Pbn Br3n+1 , achieving room-temperature ASE and nanowire (NW) lasing. Owing to the improvement of flexible and deformable characteristics provided by organic BA cation layers, high-density large-area NW laser arrays were fabricated with high photostability. Well-controlled dimensions and uniform geometries enabled 2D-RPPs NWs functioning as high-quality Fabry-Perot (FP) lasers with almost identical optical modes, high quality (Q) factor (ca. 1800), and similarly low lasing thresholds.

13.
J Am Chem Soc ; 139(18): 6376-6381, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28414231

RESUMEN

Organic solid-state lasers (OSSLs) based on singlet fluorescence have merited intensive study as an important class of light sources. Although the use of triplet phosphors has led to 100% internal quantum efficiency in organic light-emitting diodes (OLEDs), stumbling blocks in triplet lasing include generally forbidden intersystem crossing (ISC) and a low quantum yield of phosphorescence (ΦP). Here, we reported the first triplet-phosphorescence OSSL from a nanowire microcavity of a sulfide-substituted difluoroboron compound. As compared with the unsubstituted parent compound, the lone pair of electrons of sulfur substitution plus the intramolecular charge transfer interaction introduced by the nitro moiety lead to an highly efficient T1 (π,π*) ← S1 (n,π*) ISC (ΦISC = 100%) and a moderate ΦP (10%). This, plus the optical feedback provided by nanowire Fabry-Perot microcavity, enables triplet-phosphorescence OSSL emission at 650 nm under pulsed excitation. Our results open the door for a whole new class of laser materials based on previously untapped triplet phosphors.

14.
Opt Express ; 25(8): 8937-8949, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437967

RESUMEN

We propose a compact design of see-through near-eye display that is dedicated to presbyopia. Our solution is characterized by a plano-convex waveguide, which is essentially an integration of a corrective lens and two volume holograms. Its design rules are set forth in detail, followed by the results and discussion regarding the diffraction efficiency, field of view, modulation transfer function, distortion, and simulated imaging.


Asunto(s)
Modelos Biológicos , Presbiopía/fisiopatología , Diseño de Equipo , Humanos
15.
Opt Express ; 25(3): 2130-2142, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519061

RESUMEN

We propose a see-through near-eye display, which is dedicated to the visually impaired users who suffer from refractive anomalies. Our solution is characterized by a pair of corrective lenses coated with multiplexed volume holograms. Its key performance including diffraction efficiency, field of view, modulation transfer function, and distortion has been studied.


Asunto(s)
Anteojos , Óptica y Fotónica , Errores de Refracción/terapia , Diseño de Equipo , Humanos , Errores de Refracción/fisiopatología
16.
Phys Chem Chem Phys ; 19(43): 29092-29098, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29063942

RESUMEN

Zero-dimensional (0D) perovskite Cs4PbBr6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs4PbBr6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs4PbBr6 itself or CsPbBr3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs4PbBr6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs4PbBr6 MDs and CsPbBr3 MDs were phase-separated from each other and the strong green emission comes from Cs4PbBr6. Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs4PbBr6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr64- octahedra separated by a Cs+ ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs4PbBr6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

17.
J Phys Chem A ; 121(45): 8652-8658, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29064248

RESUMEN

The development of metal-free organic room temperature phosphorescence (RTP) materials has attracted increasing attention because of their applications in sensors, biolabeling (imaging) agents and anticounterfeiting technology, but remains extremely challenging owing to the restricted spin-flip intersystem crossing (ISC) followed by low-yield phosphorescence that cannot compete with nonradiative relaxation processes. Here, we report a facile strategy to realize highly efficient RTP by doping iodo difluoroboron dibenzoylmethane (I-BF2dbm-R) derivatives into a rigid crystalline 4-iodobenzonitrile (Iph-C≡N) matrix. We found that halogen bonding between cyano group of Iph-C≡N matrix and iodine atom of I-BF2dbm-R dopant is formed in doped crystals, i.e., Iph-C≡N···I-BF2dbm-R, which not only suppresses nonradiative relaxation of triplets but also promotes the spin-orbit coupling (SOC). As a result, the doped crystals show intense RTP with an efficiency up to 62.3%. By varying the substituent group R in I-BF2dbm-R from electron donating -OCH3 to electron accepting -F, -CN groups, the ratio between phosphorescence and fluorescence intensities has been systematically increased from 3.8, 15, to 50.

18.
Appl Opt ; 56(3): 380-384, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157889

RESUMEN

We present a dual-view liquid crystal display that allows two faces of the display to be viewed in opposite directions to show different image/video content simultaneously. This device is characterized by a two-domain twisted nematic liquid crystal and a patterned E-type polarizer. Its key optical performance, including the voltage-luminance curve, crosstalk, and viewing angle, has been investigated. When observed at the best viewing angle, the crosstalk between the right and left views is less than 0.07% for all grayscales. In addition, this type of crosstalk can be immune to the misalignment between the polarizers and the liquid crystal layer. For each right/left view, the range of the viewing angle spans roughly 50°.

19.
Angew Chem Int Ed Engl ; 56(32): 9400-9404, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626959

RESUMEN

Singlet fission (SF), in which one singlet exciton (S1 ) splits into two triplets (T1 ) on adjacent molecules through a correlated triplet-pair 1 (TT) state, requires precise but difficult tuning of exciton energetics and intermolecular electronic couplings in the solid state. Antiaromatic 4nπ dibenzopentalenes (DPs) are demonstrated as a new class of single-chromophore-based intramolecular SF materials that exhibit an optically allowed S2 state with E(S2 )>2×E(T1 ) and an optically forbidden S1 state. Ultrafast population transfer from a high-lying S2 state to a 1 (TT) state was observed in monomeric solution of styryl-substituted DP (SDP) on a sub-picosecond timescale. There is evidence of exciton diffusion (ED) of the 1 (TT) state to yield two individual long-lived triplets in SDP thin film. The overall triplet yield via intramolecular SF and subsequent triplet-pair diffusion can be as high as 142±10 % in thin film.

20.
J Am Chem Soc ; 138(21): 6739-45, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27167770

RESUMEN

The energy difference between a singlet exciton and twice of a triplet exciton, ΔESF, provides the thermodynamic driving force for singlet exciton fission (SF). This work reports a systematic investigation on the effect of ΔESF on SF efficiency of five heteroacenes in their solutions. The low-temperature, near-infrared phosphorescence spectra gave the energy levels of the triplet excitons, allowing us to identify the values of ΔESF, which are -0.58, -0.34, -0.31, -0.32, and -0.34 eV for the thiophene, benzene, pyridine, and two tetrafluorobenzene terminated molecules, respectively. Corresponding SF efficiencies of the five heteroacenes in 0.02 M solutions were determined via femtosecond transient absorption spectroscopy to be 117%, 124%, 140%, 132%, and 135%, respectively. This result reveals that higher ΔESF is not, as commonly expected, always beneficial for higher SF efficiency in solution phase. On the contrary, excessive exoergicity results in reduction of SF efficiency in the heteroacenes due to the promotion of other competitive exciton relaxation pathways. Therefore, it is important to optimize thermodynamic driving force when designing organic materials for high SF efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA