Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 606(7913): 358-367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477154

RESUMEN

The composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding the extent to which, and how, host genetics contributes to this variation is essential yet has proved to be difficult, as few associations have been replicated, particularly in humans2. Here we study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and the abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3 kb deletion in the gene encoding N-acetyl-galactosaminyl-transferase that underpins the ABO blood group in humans. We show that this deletion is a ≥3.5-million-year-old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut, and thereby reduces the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of the host genotype on the abundance of specific bacteria in the intestine combined with insights into the molecular mechanisms that underpin this association. Our data pave the way towards identifying the same effect in rural human populations.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Acetilgalactosamina , Microbioma Gastrointestinal , Genotipo , Porcinos , Sistema del Grupo Sanguíneo ABO/genética , Acetilgalactosamina/metabolismo , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Porcinos/microbiología
2.
Genet Sel Evol ; 53(1): 39, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892623

RESUMEN

BACKGROUND: Short tandem repeats (STRs) are genetic markers with a greater mutation rate than single nucleotide polymorphisms (SNPs) and are widely used in genetic studies and forensics. However, most studies in pigs have focused only on SNPs or on a limited number of STRs. RESULTS: This study screened 394 deep-sequenced genomes from 22 domesticated pig breeds/populations worldwide, wild boars from both Europe and Asia, and numerous outgroup Suidaes, and identified a set of 878,967 polymorphic STRs (pSTRs), which represents the largest repository of pSTRs in pigs to date. We found multiple lines of evidence that pSTRs in coding regions were affected by purifying selection. The enrichment of trinucleotide pSTRs in coding sequences (CDS), 5'UTR and H3K4me3 regions suggests that trinucleotide STRs serve as important components in the exons and promoters of the corresponding genes. We demonstrated that, compared to SNPs, pSTRs provide comparable or even greater accuracy in determining the breed identity of individuals. We identified pSTRs that showed significant population differentiation between domestic pigs and wild boars in Asia and Europe. We also observed that some pSTRs were significantly associated with environmental variables, such as average annual temperature or altitude of the originating sites of Chinese indigenous breeds, among which we identified loss-of-function and/or expanded STRs overlapping with genes such as AHR, LAS1L and PDK1. Finally, our results revealed that several pSTRs show stronger signals in domestic pig-wild boar differentiation or association with the analysed environmental variables than the flanking SNPs within a 100-kb window. CONCLUSIONS: This study provides a genome-wide high-density map of pSTRs in diverse pig populations based on genome sequencing data, enabling a more comprehensive characterization of their roles in evolutionary and environmental adaptation.


Asunto(s)
Adaptación Fisiológica , Ecosistema , Evolución Molecular , Repeticiones de Microsatélite , Porcinos/genética , Animales , Polimorfismo de Nucleótido Simple
3.
Genet Sel Evol ; 51(1): 46, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31443641

RESUMEN

BACKGROUND: Meat production from the commercial crossbred Duroc × (Landrace × Yorkshire) (DLY) pig is predominant in the pork industry, but its meat quality is often impaired by low ultimate pH (pHu). Muscle glycogen level at slaughter is closely associated with pHu and meat technological quality, but its genetic basis remains elusive. The aim of this study was to identify genes and/or causative mutations associated with muscle glycogen level and other meat quality traits by performing a genome-wide association study (GWAS) and additional analyses in a population of 610 DLY pigs. RESULTS: Our initial GWAS identified a genome-wide significant (P = 2.54e-11) quantitative trait locus (QTL) on SSC15 (SSC for Sus scrofa chromosome) for the level of residual glycogen and glucose (RG) in the longissimus muscle at 45 min post-mortem. Then, we demonstrated that a low-frequency (minor allele frequency = 0.014) R200Q missense mutation in the PRKAG3 (RN) gene caused this major QTL effect on RG. Moreover, we showed that the 200Q (RN-) allele was introgressed from the Hampshire breed into more than one of the parental breeds of the DLY pigs. After conditioning on R200Q, re-association analysis revealed three additional QTL for RG on SSC3 and 4, and on an unmapped scaffold (AEMK02000452.1). The SSC3 QTL was most likely caused by a splice mutation (g.8283C>A) in the PHKG1 gene that we had previously identified. Based on functional annotation, the genes TMCO1 on SSC4 and CKB on the scaffold represent promising candidate genes for the other two QTL. There were significant interaction effects of the GWAS tag SNPs at those two loci with PRKAG3 R200Q on RG. In addition, a number of common variants with potentially smaller effects on RG (P < 10-4) were uncovered by a second conditional GWAS after adjusting for the two causal SNPs, R200Q and g.8283C>A. CONCLUSIONS: We found that the RN- allele segregates in the parental lines of our DLY population and strongly influences its meat quality. Our findings also indicate that the genetic basis of RG in DLY can be mainly attributed to two major genes (PRKAG3 and PHKG1), along with many minor genes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Glucógeno/metabolismo , Carne/análisis , Músculo Esquelético/metabolismo , Fosforilasa Quinasa/genética , Porcinos/metabolismo , Animales , Estudios de Cohortes , Femenino , Calidad de los Alimentos , Variación Genética , Estudio de Asociación del Genoma Completo/veterinaria , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple , Subunidades de Proteína/genética , Sitios de Carácter Cuantitativo , Especificidad de la Especie , Porcinos/genética
4.
Zool Res ; 45(1): 138-151, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38155423

RESUMEN

Regulatory sequences and transposable elements (TEs) account for a large proportion of the genomic sequences of species; however, their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations. Here, we conducted an integrated analysis using H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs. We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages. Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity, results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3. Furthermore, 1.45% of TEs overlapped with either the H3K27ac or H3K4me3 peaks, with the majority displaying tissue-specific activity. Notably, a TE subfamily (LTR4C_SS), containing binding motifs for SIX1 and SIX4, showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries. RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes, including 4 688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression. Of note, 1 967 TE-containing transcripts were enriched in the testes. We identified a long terminal repeat (LTR), MLT1F1, acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig dataset. This element was also conserved in humans and mice, suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns. Collectively, our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.


Asunto(s)
Elementos Transponibles de ADN , Transcriptoma , Humanos , Masculino , Ratones , Animales , Porcinos/genética , Elementos Transponibles de ADN/genética , Histonas/genética , Histonas/metabolismo , ARN Mensajero , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
5.
J Anim Sci Biotechnol ; 13(1): 8, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35034641

RESUMEN

BACKGROUND: Short tandem repeats (STRs) were recently found to have significant impacts on gene expression and diseases in humans, but their roles on gene expression and complex traits in pigs remain unexplored. This study investigates the effects of STRs on gene expression in liver tissues based on the whole-genome sequences and RNA-Seq data of a discovery cohort of 260 F6 individuals and a validation population of 296 F7 individuals from a heterogeneous population generated from crosses among eight pig breeds. RESULTS: We identified 5203 and 5868 significantly expression STRs (eSTRs, FDR < 1%) in the F6 and F7 populations, respectively, most of which could be reciprocally validated (π1 = 0.92). The eSTRs explained 27.5% of the cis-heritability of gene expression traits on average. We further identified 235 and 298 fine-mapped STRs through the Bayesian fine-mapping approach in the F6 and F7 pigs, respectively, which were significantly enriched in intron, ATAC peak, compartment A and H3K4me3 regions. We identified 20 fine-mapped STRs located in 100 kb windows upstream and downstream of published complex trait-associated SNPs, which colocalized with epigenetic markers such as H3K27ac and ATAC peaks. These included eSTR of the CLPB, PGLS, PSMD6 and DHDH genes, which are linked with genome-wide association study (GWAS) SNPs for blood-related traits, leg conformation, growth-related traits, and meat quality traits, respectively. CONCLUSIONS: This study provides insights into the effects of STRs on gene expression traits. The identified eSTRs are valuable resources for prioritizing causal STRs for complex traits in pigs.

6.
Sci China Life Sci ; 64(10): 1732-1746, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33527326

RESUMEN

Subcutaneous fat (SCF) and intramuscular fat (IMF) deposition is relevant to health in humans, as well as meat production and quality in pigs. In this study, we generated RNA sequence data for 122 SCF, 120 IMF, and 87 longissimus dorsi muscle (LDM) samples using 155 F6 pigs from a specially designed heterogeneous population generated by intercrossing four highly selected European commercial breeds and four indigenous Chinese pig breeds. The phenotypes including waist back fat thickness and intramuscular fat content were also measured in the 155 F6 pigs. We found that the genes in SCF and IMF differed largely in both expression levels and network connectivity, and highlighted network modules that exhibited strongest gain of connectivity in SCF and IMF, containing genes that were associated with the immune process and DNA double-strand repair, respectively. We identified 215 SCF genes related to kinase inhibitor activity, mitochondrial fission, and angiogenesis, and 90 IMF genes related to lipolysis and fat cell differentiation, displayed a tissue-specific association with back fat thickness and IMF content, respectively. We found that cis-expression QTL for trait-associated genes in the two adipose tissues tended to have tissue-dependent predictability for the two adipose traits. Alternative splicing of genes was also found to be associated with SCF or IMF deposition, but the association was much less extensive than that based on expression levels. This study provides a better understanding of SCF and IMF gene transcription and network organization and identified critical genes and network modules that displayed tissue-specific associations with subcutaneous and intramuscular fat deposition. These features are helpful for designing breeding programs to genetically improve the two adipose traits in a balanced way.


Asunto(s)
Tejido Adiposo/metabolismo , Redes Reguladoras de Genes , Empalme Alternativo , Animales , Músculo Esquelético/metabolismo , Especificidad de Órganos , Fenotipo , Carne de Cerdo/análisis , Sitios de Carácter Cuantitativo , Grasa Subcutánea/metabolismo , Porcinos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA