Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 3006-3009, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824314

RESUMEN

In analogy to a wavelength selective switch in wavelength-division multiplexing (WDM) optical fiber communication systems, a spatial and optical mode selective switch (SMSS) would be an important component in future ultrahigh capacity optical fiber communication systems based on space and mode division multiplexing. In this work, a free-space SMSS for orbital angular momentum (OAM) mode-division multiplexing (MDM) is proposed and experimentally demonstrated. The SMSS consists of a separating part for transforming OAM modes to spatial modes and a recombining part for selecting and recombining the modes to any spatial channel. The SMSS is able to implement strictly non-blocking switching between a total of 36 SDM/MDM channels configured as four spatial channels each supporting nine OAM mode channels.

2.
Opt Lett ; 49(4): 887-890, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359208

RESUMEN

The multiplication of orbital angular momentum (OAM) modes using optical coordinate transformation is useful for OAM optical networks, but the scalability of this scheme is limited by the ray model. Here, we propose an alternative scheme for the scalable multiplication of OAM modes based on modified multi-plane light conversion (MPLC) that can extend azimuthal and radial indices of OAM modes supported by the multipliers and unlock a new degree of freedom for radial high-order OAM states that has been restricted in the zero order. The multiplication for 20 OAM modes with radial index p = 0 and 10 OAM modes with radial index p = 1 is performed in simulation and experiment. The 3-dB optical bandwidth corresponding to the purity of OAM modes covers the entire C-band experimentally. This novel, to the best of our knowledge, approach to manipulating OAM states provides valuable insights and flexible strategies for high-capacity OAM optical communication and high-dimensional optical quantum information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA