Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34388391

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Asunto(s)
Inmunoterapia , Terapia Molecular Dirigida , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Aloinjertos/inmunología , Secuencias de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Humanos , Terapia de Inmunosupresión , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Oncogenes , Organoides/efectos de los fármacos , Organoides/patología , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
2.
Cell ; 164(3): 433-46, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824656

RESUMEN

The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Glucólisis , Humanos , Insulina/metabolismo , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal
3.
Cell ; 155(2): 397-409, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120138

RESUMEN

The pyruvate kinase M2 isoform (PKM2) is expressed in cancer and plays a role in regulating anabolic metabolism. To determine whether PKM2 is required for tumor formation or growth, we generated mice with a conditional allele that abolishes PKM2 expression without disrupting PKM1 expression. PKM2 deletion accelerated mammary tumor formation in a Brca1-loss-driven model of breast cancer. PKM2 null tumors displayed heterogeneous PKM1 expression, with PKM1 found in nonproliferating tumor cells and no detectable pyruvate kinase expression in proliferating cells. This suggests that PKM2 is not necessary for tumor cell proliferation and implies that the inactive state of PKM2 is associated with the proliferating cell population within tumors, whereas nonproliferating tumor cells require active pyruvate kinase. Consistent with these findings, variable PKM2 expression and heterozygous PKM2 mutations are found in human tumors. These data suggest that regulation of PKM2 activity supports the different metabolic requirements of proliferating and nonproliferating tumor cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Eliminación de Gen , Neoplasias Mamarias Experimentales/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Exones , Femenino , Técnicas de Inactivación de Genes , Xenoinjertos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutación , Metástasis de la Neoplasia , Trasplante de Neoplasias , Empalme del ARN
4.
Cell ; 155(4): 844-57, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209622

RESUMEN

Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or ß (PI5P4Kα and ß) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and ß in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K ß and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Senescencia Celular , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Genes Letales , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
5.
J Biol Chem ; 299(8): 105021, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423299

RESUMEN

Recurrent hormone receptor-positive (HR+) breast cancer kills more than 600,000 women annually. Although HR+ breast cancers typically respond well to therapies, approximately 30% of patients relapse. At this stage, the tumors are usually metastatic and incurable. Resistance to therapy, particularly endocrine therapy is typically thought to be tumor intrinsic (e.g., estrogen receptor mutations). However, tumor-extrinsic factors also contribute to resistance. For example, stromal cells, such as cancer-associated fibroblasts (CAFs), residing in the tumor microenvironment, are known to stimulate resistance and disease recurrence. Recurrence in HR+ disease has been difficult to study due to the prolonged clinical course, complex nature of resistance, and lack of appropriate model systems. Existing HR+ models are limited to HR+ cell lines, a few HR+ organoid models, and xenograft models that all lack components of the human stroma. Therefore, there is an urgent need for more clinically relevant models to study the complex nature of recurrent HR+ breast cancer, and the factors contributing to treatment relapse. Here, we present an optimized protocol that allows a high take-rate, and simultaneous propagation of patient-derived organoids (PDOs) and matching CAFs, from primary and metastatic HR+ breast cancers. Our protocol allows for long-term culturing of HR+ PDOs that retain estrogen receptor expression and show responsiveness to hormone therapy. We further show the functional utility of this system by identifying CAF-secreted cytokines, such as growth-regulated oncogene α , as stroma-derived resistance drivers to endocrine therapy in HR+ PDOs.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Recurrencia Local de Neoplasia/patología , Fibroblastos/metabolismo , Organoides/metabolismo , Microambiente Tumoral
6.
Breast Cancer Res ; 26(1): 109, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956693

RESUMEN

BACKGROUND: The effect of gender-affirming testosterone therapy (TT) on breast cancer risk is unclear. This study investigated the association between TT and breast tissue composition and breast tissue density in trans masculine individuals (TMIs). METHODS: Of the 444 TMIs who underwent chest-contouring surgeries between 2013 and 2019, breast tissue composition was assessed in 425 TMIs by the pathologists (categories of lobular atrophy and stromal composition) and using our automated deep-learning algorithm (% epithelium, % fibrous stroma, and % fat). Forty-two out of 444 TMIs had mammography prior to surgery and their breast tissue density was read by a radiologist. Mammography digital files, available for 25/42 TMIs, were analyzed using the LIBRA software to obtain percent density, absolute dense area, and absolute non-dense area. Linear regression was used to describe the associations between duration of TT use and breast tissue composition or breast tissue density measures, while adjusting for potential confounders. Analyses stratified by body mass index were also conducted. RESULTS: Longer duration of TT use was associated with increasing degrees of lobular atrophy (p < 0.001) but not fibrous content (p = 0.82). Every 6 months of TT was associated with decreasing amounts of epithelium (exp(ß) = 0.97, 95% CI 0.95,0.98, adj p = 0.005) and fibrous stroma (exp(ß) = 0.99, 95% CI 0.98,1.00, adj p = 0.05), but not fat (exp(ß) = 1.01, 95%CI 0.98,1.05, adj p = 0.39). The effect of TT on breast epithelium was attenuated in overweight/obese TMIs (exp(ß) = 0.98, 95% CI 0.95,1.01, adj p = 0.14). When comparing TT users versus non-users, TT users had 28% less epithelium (exp(ß) = 0.72, 95% CI 0.58,0.90, adj p = 0.003). There was no association between TT and radiologist's breast density assessment (p = 0.58) or LIBRA measurements (p > 0.05). CONCLUSIONS: TT decreases breast epithelium, but this effect is attenuated in overweight/obese TMIs. TT has the potential to affect the breast cancer risk of TMIs. Further studies are warranted to elucidate the effect of TT on breast density and breast cancer risk.


Asunto(s)
Densidad de la Mama , Mama , Mamografía , Testosterona , Personas Transgénero , Humanos , Densidad de la Mama/efectos de los fármacos , Femenino , Adulto , Testosterona/uso terapéutico , Mamografía/métodos , Mama/diagnóstico por imagen , Mama/patología , Masculino , Persona de Mediana Edad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Índice de Masa Corporal , Procedimientos de Reasignación de Sexo/efectos adversos , Procedimientos de Reasignación de Sexo/métodos
7.
Mod Pathol ; 36(6): 100121, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889065

RESUMEN

We previously reported breast histopathologic features associated with testosterone therapy in transmasculine chest-contouring surgical specimens. During that study, we observed a high frequency of intraepidermal glands in the nipple-areolar complex (NAC) formed by Toker cells. This study reports Toker cell hyperplasia (TCH)-the presence of clusters of Toker cells consisting of at least 3 contiguous cells and/or glands with lumen formation-in the transmasculine population. Increased numbers of singly dispersed Toker cells were not considered TCH. Among the 444 transmasculine individuals, 82 (18.5%) had a portion of their NAC excised and available for evaluation. We also reviewed the NACs from 55 cisgender women who were aged <50 years old and had full mastectomies. The proportion of transmasculine cases with TCH (20/82; 24.4%) was 1.7-fold higher than cisgender women (8/55; 14.5%) but did not achieve significance (P = .20). However, in cases with TCH, the rate of gland formation is 2.4-fold higher in transmasculine cases, achieving borderline significance (18/82 vs 5/55; P = .06). Among transmasculine individuals, TCH was significantly more likely to be present in those with higher body mass index (P = .03). A subset of 5 transmasculine and 5 cisgender cases were stained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), androgen receptor (AR), cytokeratin 7, and Ki67. All 10 cases were cytokeratin 7+ and Ki67-; 9 out of 10 cases were AR+. Toker cells in transmasculine cases demonstrated variable expression of ER, PR, and HER2. For cisgender cases, Toker cells were consistently ER+, PR-, and HER2-. In conclusion, there is a higher rate of TCH in the transmasculine than cisgender population, particularly among transmasculine individuals with high body mass index and taking testosterone. To our knowledge, this is the first study to demonstrate that Toker cells are AR+. Toker cell features display variable ER, PR, and HER2 immunoreactivity. The clinical significance of TCH in the transmasculine population remains to be elucidated.


Asunto(s)
Neoplasias de la Mama , Pezones , Humanos , Femenino , Persona de Mediana Edad , Pezones/patología , Hiperplasia/patología , Queratina-7 , Antígeno Ki-67 , Testosterona , Neoplasias de la Mama/patología
8.
Mod Pathol ; 34(1): 85-94, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32939016

RESUMEN

Testosterone therapy (TT) is administered to enhance masculinization in transgender individuals. The long-term effect of exogenous testosterone on breast tissues remains unclear. Our study evaluated the modulation of breast morphology by TT in transgender individuals with special attention to duration of TT. We reviewed 447 breast surgical specimens from gender affirming chest-contouring surgery, and compared histopathological findings including degree of lobular atrophy, and atypical and non-atypical proliferations between subjects who did (n = 367) and did not (n = 79) receive TT. TT for one patient was unknown. TT for >12 months was associated with seven histopathological features. Longer duration of TT was significantly associated with higher degrees of lobular atrophy (p < 0.001). This relationship remained significant after accounting for age at surgery, ethnicity, body mass index, and presurgical oophorectomy (adjusted p < 0.001). Four types of lesions were more likely to be absent in breast tissues exposed to longer durations of TT: cysts (median = 16.2 months; p < 0.01; adjusted p = 0.01), fibroadenoma (median = 14.8 months; p = 0.02; adjusted p = 0.07), pseudoangiomatous stromal hyperplasia (median = 17.0 months; p < 0.001; adjusted p < 0.001), and papillomas (median = 14.7 months; p = 0.04; adjusted p = 0.20). Columnar cell change and mild inflammation were also less likely to occur in subjects receiving TT (p < 0.05), but were not linked to the duration of TT. Atypia and ductal carcinoma in situ were detected in 11 subjects (2.5%) all of whom received TT ranging from 10.1 to 64.1 months. The incidental findings of high-risk lesions and carcinoma as well as the risk of cancer in residual breast tissue after chest-contouring surgery warrant the consideration of culturally sensitive routine breast cancer screening protocols for transgender men and masculine-centered gender nonconforming individuals. Long-term follow-up studies and molecular investigations are needed to understand the breast cancer risk of transgender individuals who receive TT.


Asunto(s)
Andrógenos/efectos adversos , Enfermedades de la Mama/inducido químicamente , Mama/efectos de los fármacos , Testosterona/efectos adversos , Adulto , Femenino , Humanos , Masculino , Estudios Retrospectivos , Cirugía de Reasignación de Sexo , Personas Transgénero
9.
NMR Biomed ; 34(8): e4560, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34086382

RESUMEN

In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.


Asunto(s)
Neoplasias de la Mama/enzimología , Eliminación de Gen , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/genética , Neoplasias Pulmonares/enzimología , Espectroscopía de Resonancia Magnética , Ácido Pirúvico/metabolismo , Animales , Proteína BRCA1/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piridonas/administración & dosificación , Piridonas/farmacología , Simportadores/metabolismo , Tiofenos/administración & dosificación , Tiofenos/farmacología
10.
BMC Cancer ; 20(1): 197, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164626

RESUMEN

BACKGROUND: BRCA1/2 germline mutation related cancers are candidates for new immune therapeutic interventions. This study was a hypothesis generating exploration of genomic data collected at diagnosis for 19 patients. The prominent tumor mutation burden (TMB) in hereditary breast and ovarian cancers in this cohort was not correlated with high global immune activity in their microenvironments. More information is needed about the relationship between genomic instability, phenotypes and immune microenvironments of these hereditary tumors in order to find appropriate markers of immune activity and the most effective anticancer immune strategies. METHODS: Mining and statistical analyses of the original DNA and RNA sequencing data and The Cancer Genome Atlas data were performed. To interpret the data, we have used published literature and web available resources such as Gene Ontology, The Cancer immunome Atlas and the Cancer Research Institute iAtlas. RESULTS: We found that BRCA1/2 germline related breast and ovarian cancers do not represent a unique phenotypic identity, but they express a range of phenotypes similar to sporadic cancers. All breast and ovarian BRCA1/2 related tumors are characterized by high homologous recombination deficiency (HRD) and low aneuploidy. Interestingly, all sporadic high grade serous ovarian cancers (HGSOC) and most of the subtypes of triple negative breast cancers (TNBC) also express a high degree of HRD. CONCLUSIONS: TMB is not associated with the magnitude of the immune response in hereditary BRCA1/2 related breast and ovarian cancers or in sporadic TNBC and sporadic HGSOC. Hereditary tumors express phenotypes as heterogenous as sporadic tumors with various degree of "BRCAness" and various characteristics of the immune microenvironments. The subtyping criteria developed for sporadic tumors can be applied for the classification of hereditary tumors and possibly also characterization of their immune microenvironment. A high HRD score may be a good candidate biomarker for response to platinum, and potentially PARP-inhibition. TRIAL REGISTRATION: Phase I Study of the Oral PI3kinase Inhibitor BKM120 or BYL719 and the Oral PARP Inhibitor Olaparib in Patients With Recurrent TNBC or HGSOC (NCT01623349), first posted on June 20, 2012. The design and the outcome of the clinical trial is not in the scope of this study.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Cistadenocarcinoma Seroso/genética , Perfilación de la Expresión Génica/métodos , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Neoplasias Ováricas/genética , Neoplasias de la Mama Triple Negativas/genética , Cistadenocarcinoma Seroso/patología , Minería de Datos , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Síndrome de Cáncer de Mama y Ovario Hereditario/patología , Recombinación Homóloga , Humanos , Neoplasias Ováricas/patología , Análisis de Secuencia de ARN , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Secuenciación Completa del Genoma
11.
Lancet Oncol ; 20(4): 570-580, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30880072

RESUMEN

BACKGROUND: Based on preclinical work, we found that combination of poly (ADP-ribose) polymerase (PARP) inhibitors with drugs that inhibit the homologous recombination repair (HRR) pathway (such as PI3K inhibitors) might sensitise HRR-proficient epithelial ovarian cancers to PARP inhibitors. We aimed to assess the safety and identify the recommended phase 2 dose of the PARP inhibitor olaparib in combination with the PI3K inhibitor alpelisib in patients with epithelial ovarian cancer and in patients with breast cancer. METHODS: In this multicentre, open-label, phase 1b trial following a 3 + 3 dose-escalation design, we recruited patients aged 18 years or older with the following key eligibility criteria: confirmed diagnosis of either recurrent ovarian, fallopian tube, or primary peritoneal cancer of high-grade serous histology; confirmed diagnosis of either recurrent ovarian, fallopian tube, or primary peritoneal cancer of any histology with known germline BRCA mutations; confirmed diagnosis of recurrent breast cancer of triple-negative histology; or confirmed diagnosis of recurrent breast cancer of any histology with known germline BRCA mutations. Additional patients with epithelial ovarian cancer were enrolled in a dose-expansion cohort. Four dose levels were planned: the starting dose level of alpelisib 250 mg once a day plus olaparib 100 mg twice a day (dose level 0); alpelisib 250 mg once a day plus olaparib 200 mg twice a day (dose level 1); alpelisib 300 mg once a day plus olaparib 200 mg twice a day (dose level 2); and alpelisib 200 mg once a day plus olaparib 200 mg twice a day (dose level 3). Both drugs were administered orally, in tablet formulation. The primary objective was to identify the maximum tolerated dose and the recommended phase 2 dose of the combination of alpelisib and olaparib for patients with epithelial ovarian cancer and patients with breast cancer. Analyses included all patients who received at least one dose of the study drugs. The trial is active, but closed to enrolment; follow-up for patients who completed treatment is ongoing. This trial is registered with ClinicalTrials.gov, number NCT01623349. FINDINGS: Between Oct 3, 2014, and Dec 21, 2016, we enrolled 34 patients (28 in the dose-escalation cohort and six in the dose-expansion cohort); two in the dose-escalation cohort were ineligible at the day of scheduled study initiation. Maximum tolerated dose and recommended phase 2 dose were identified as alpelisib 200 mg once a day plus olaparib 200 mg twice a day (dose level 3). Considering all dose levels, the most common treatment-related grade 3-4 adverse events were hyperglycaemia (five [16%] of 32 patients), nausea (three [9%]), and increased alanine aminotransferase concentrations (three [9%]). No treatment-related deaths occurred. Dose-limiting toxic effects included hyperglycaemia and fever with decreased neutrophil count. Of the 28 patients with epithelial ovarian cancer, ten (36%) achieved a partial response and 14 (50%) had stable disease according to Response Evaluation Criteria in Solid Tumors 1.1. INTERPRETATION: Combining alpelisib and olaparib is feasible with no unexpected toxic effects. The observed activity provides preliminary clinical evidence of synergism between olaparib and alpelisib, particularly in epithelial ovarian cancer, and warrants further investigation. FUNDING: Ovarian Cancer Dream Team (Stand Up To Cancer, Ovarian Cancer Research Alliance, National Ovarian Cancer Coalition), Breast Cancer Research Foundation, Novartis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Tiazoles/uso terapéutico , Anciano , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Femenino , Genoma Humano/genética , Humanos , Dosis Máxima Tolerada , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Resultado del Tratamiento
12.
Breast Cancer Res ; 21(1): 78, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277699

RESUMEN

BACKGROUND: The PI3K/AKT pathway is activated through PIK3CA or AKT1 mutations and PTEN loss in breast cancer. We conducted a phase II trial with an allosteric AKT inhibitor MK-2206 in patients with advanced breast cancer who had tumors with PIK3CA/AKT1 mutations and/or PTEN loss/mutation. METHODS: The primary endpoint was objective response rate (ORR). Secondary endpoints were 6-month progression-free survival (6 m PFS), predictive and pharmacodynamic markers, safety, and tolerability. Patients had pre-treatment and on-treatment biopsies as well as collection of peripheral blood mononuclear cells (PBMC) and platelet-rich plasma (PRP). Next-generation sequencing, immunohistochemistry, and reverse phase protein arrays (RPPA) were performed. RESULTS: Twenty-seven patients received MK-2206. Eighteen patients were enrolled into the PIK3CA/AKT1 mutation arm (cohort A): 13 had PIK3CA mutations, four had AKT1 mutations, and one had a PIK3CA mutation as well as PTEN loss. ORR and 6 m PFS were both 5.6% (1/18), with one patient with HR+ breast cancer and a PIK3CA E542K mutation experiencing a partial response (on treatment for 36 weeks). Nine patients were enrolled on the PTEN loss/mutation arm (cohort B). ORR was 0% and 6 m PFS was 11% (1/9), observed in a patient with triple-negative breast cancer and PTEN loss. The study was stopped early due to futility. The most common adverse events were fatigue (48%) and rash (44%). On pre-treatment biopsy, PIK3CA and AKT1 mutation status was concordant with archival tissue testing. However, two patients with PTEN loss based on archival testing had PTEN expression on the pre-treatment biopsy. MK-2206 treatment was associated with a significant decline in pAKT S473 and pAKT T308 and PI3K activation score in PBMC and PRPs, but not in tumor biopsies. By IHC, there was no significant decrease in median pAKT S473 or Ki-67 staining, but a drop was observed in both responders. CONCLUSIONS: MK-2206 monotherapy had limited clinical activity in advanced breast cancer patients selected for PIK3CA/AKT1 or PTEN mutations or PTEN loss. This may, in part, be due to inadequate target inhibition at tolerable doses in heavily pre-treated patients with pathway activation, as well as tumor heterogeneity and evolution in markers such as PTEN conferring challenges in patient selection. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01277757 . Registered 13 January 2011.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Adulto , Anciano , Biomarcadores , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Monitoreo de Drogas , Femenino , Compuestos Heterocíclicos con 3 Anillos/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Inhibidores de Proteínas Quinasas/farmacología , Resultado del Tratamiento
13.
Intervirology ; 62(2): 80-89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31315128

RESUMEN

BACKGROUND: In immunocompromised patients, human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality. Suppressor of cytokine signaling (SOCS) proteins are very potent negative regulators of the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. We hypothesized that HCMV exploits SOCS1 and/or SOCS3 to its advantage. METHODS: All experiments were carried out with primary human lung-derived microvascular endothelial cells (HMVEC). SOCS1 and SOCS3 were silenced by transfecting the cells with siRNA. HCMV was propagated and titered on human lung-derived fibroblasts MRC5. Real-time PCR and Western blot were used to detect mRNA and protein levels, respectively. RESULTS: The data presented show that an efficient replication of HCMV in HMVEC is dependent on SOCS3 protein. Time course analysis revealed an increase in SOCS3 protein levels in infected cells. Silencing of SOCS3 (siSOCS3) resulted in inhibition of viral immediate early, early, and late antigen production. Consistently, HCMV titers produced by siSOCS3 cultures were significantly decreased when compared to control transfected cultures (siCNTRs). STAT1 and STAT2 phosphorylation was increased in siSOCS3-infected cells when compared to siCNTR-treated cells. CONCLUSION: These findings indicate the implication of SOCS3 in the mechanism of HCMV-mediated control of cellular immune responses.


Asunto(s)
Citomegalovirus/fisiología , Células Endoteliales/virología , Inmunidad Celular , Proteína 3 Supresora de la Señalización de Citocinas/inmunología , Replicación Viral , Células Cultivadas , Células Endoteliales/inmunología , Silenciador del Gen , Humanos , Pulmón/citología , Pulmón/virología , Fosforilación , ARN Interferente Pequeño , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/genética
14.
Proc Natl Acad Sci U S A ; 113(27): 7596-601, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27313209

RESUMEN

Type 2 phosphatidylinositol-5-phosphate 4-kinase (PI5P4K) converts phosphatidylinositol-5-phosphate to phosphatidylinositol-4,5-bisphosphate. Mammals have three enzymes PI5P4Kα, PI5P4Kß, and PI5P4Kγ, and these enzymes have been implicated in metabolic control, growth control, and a variety of stress responses. Here, we show that mice with germline deletion of type 2 phosphatidylinositol-5-phosphate 4-kinase gamma (Pip4k2c), the gene encoding PI5P4Kγ, appear normal in regard to growth and viability but have increased inflammation and T-cell activation as they age. Immune cell infiltrates increased in Pip4k2c(-/-) mouse tissues. Also, there was an increase in proinflammatory cytokines, including IFNγ, interleukin 12, and interleukin 2 in plasma of Pip4k2c(-/-) mice. Pip4k2c(-/-) mice had an increase in T-helper-cell populations and a decrease in regulatory T-cell populations with increased proliferation of T cells. Interestingly, mammalian target of rapamycin complex 1 (mTORC1) signaling was hyperactivated in several tissues from Pip4k2c(-/-) mice and treating Pip4k2c(-/-) mice with rapamycin reduced the inflammatory phenotype, resulting in a decrease in mTORC1 signaling in tissues and a decrease in proinflammatory cytokines in plasma. These results indicate that PI5P4Kγ plays a role in the regulation of the immune system via mTORC1 signaling.


Asunto(s)
Inflamación/genética , Activación de Linfocitos/genética , Complejos Multiproteicos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Femenino , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Polimorfismo de Nucleótido Simple , Sirolimus , Linfocitos T/fisiología
15.
Proc Natl Acad Sci U S A ; 113(30): E4338-47, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402769

RESUMEN

We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.


Asunto(s)
Daño del ADN , Nucleósidos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Morfolinas/administración & dosificación , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
16.
Trends Biochem Sci ; 34(4): 162-5, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19269830

RESUMEN

SMRT (silencing mediator for retinoic acid and thyroid hormone receptors) is a transcriptional co-repressor that mediates the repressive function of nuclear hormone receptors such as the estrogen receptor (ER). Decreased SMRT levels correlate with acquired tamoxifen resistance in breast cancer, and SMRT restoration might resensitize breast cancer cells to tamoxifen. A new study demonstrates that SMRT protein stability is regulated by phosphorylation-dependent Pin1-catalyzed prolyl-isomerization. Pin1 functions downstream of HER2, positioning it as an important modulator of the crosstalk between ER and growth factor signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Humanos , Co-Represor 2 de Receptor Nuclear , Isomerasa de Peptidilprolil/metabolismo
17.
Case Rep Oncol ; 17(1): 392-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435448

RESUMEN

Introduction: The advent of immune checkpoint inhibitors marks significant progress in the evolution of cancer treatment. Recent clinical trials have demonstrated the success of immune-oncologic (IO) agents like pembrolizumab (Keytruda™) in combination with chemotherapy against triple-negative breast cancer (TNBC) [Ann Oncol. 2017 Jun 1;28(6):1388-1398]. There is less literature investigating pembrolizumab in monotherapy and in cases of rare tumor mutational burden. Case Presentation: Here, we report the case of a 65-year-old Native American and African American woman with previous incomplete lines of therapy diagnosed with recurrent TNBC and pulmonary metastases. Next-generation sequencing of the metastatic nodules demonstrated a significantly hypermutated tumor with rare polyploidy. The patient had a durable (14 months) response and ongoing remission of the metastatic lesions after administering the programmed cell death 1 inhibitor pembrolizumab. No serious immune checkpoint inhibitor-related toxicities or disease progression was observed during the treatment. Conclusion: Our report describes recurrent TNBC with a rare amount of hypermutation and the successful use of an IO agent as a treatment.

18.
Cancer Res Commun ; 4(6): 1430-1440, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38717161

RESUMEN

The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results. We therefore set out to examine whether the combination of copanlisib, a clinical grade pan-PI3K inhibitor, and eribulin, an antimitotic chemotherapy approved for taxane-resistant metastatic breast cancer, improves the antitumor effect in TNBC. A panel of eight TNBC patient-derived xenograft (PDX) models was tested for tumor growth response to copanlisib and eribulin, alone or in combination. Treatment-induced signaling changes were examined by reverse phase protein array, immunohistochemistry (IHC) and 18F-fluorodeoxyglucose PET (18F-FDG PET). Compared with each drug alone, the combination of eribulin and copanlisib led to enhanced tumor growth inhibition, which was observed in both eribulin-sensitive and -resistant TNBC PDX models, regardless of PI3K pathway alterations or PTEN status. Copanlisib reduced PI3K signaling and enhanced eribulin-induced mitotic arrest. The combination enhanced induction of apoptosis compared with each drug alone. Interestingly, eribulin upregulated PI3K pathway signaling in PDX tumors, as demonstrated by increased tracer uptake by 18F-FDG PET scan and AKT phosphorylation by IHC. These changes were inhibited by the addition of copanlisib. These data support further clinical development for the combination of copanlisib and eribulin and led to a phase I/II trial of copanlisib and eribulin in patients with metastatic TNBC. SIGNIFICANCE: In this research, we demonstrated that the pan-PI3K inhibitor copanlisib enhanced the cytotoxicity of eribulin in a panel of TNBC PDX models. The improved tumor growth inhibition was irrespective of PI3K pathway alteration and was corroborated by the enhanced mitotic arrest and apoptotic induction observed in PDX tumors after combination therapy compared with each drug alone. These data provide the preclinical rationale for the clinical testing in TNBC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Furanos , Cetonas , Pirimidinas , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Cetonas/farmacología , Cetonas/administración & dosificación , Cetonas/uso terapéutico , Animales , Furanos/farmacología , Furanos/administración & dosificación , Furanos/uso terapéutico , Humanos , Femenino , Ratones , Pirimidinas/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Quinazolinas/farmacología , Quinazolinas/administración & dosificación , Quinazolinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Policétidos Poliéteres
19.
medRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260574

RESUMEN

Objective: Determine the association between TT and breast tissue composition and breast tissue density in trans masculine individuals (TMIs). Design: This is a cross-sectional study. Setting: TMIs (n=444) underwent chest-contouring surgeries to treat their gender dysphoria between 2013 and 2019 at an urban medical center. Participants: Of the 444 TMIs, 425 had pathology images analyzed by our deep-learning algorithm to extract breast tissue composition. A subset of 42/444 TMIs had mammography prior to surgery; mammography files were available for 25/42 TMIs and analyzed using a breast density software, LIBRA. Main Outcomes and Measures: The first outcome was the association of duration of TT and breast tissue composition assessed by pathologists (categories of lobular atrophy and stromal composition) or by our algorithm (% epithelium, % fibrous stroma, and % fat). The second outcome is the association of TT and breast density as assessed by a radiologist (categorical variable) or by LIBRA (percent density, absolute dense area, and absolute non-dense area). Results: Length of TT was associated with increasing degrees of lobular atrophy ( p <0.001) but not fibrous content ( p =0.821) when assessed by the pathologists. Every six months of TT was associated with decreased amounts of both epithelium (exp(ß)=0.97, 95% CI 0.95-0.98, adj p =0.005) and stroma (exp(ß)=0.99, 95% CI 0.98-1.00, adj p =0.051), but not fat (exp(ß)=1.01, 95%CI 0.98-1.05, p =0.394) in fully adjusted models. There was no association between TT and radiologist's breast density assessment ( p =0.575) or LIBRA measurements ( p >0.05). Conclusions: TT decreases breast epithelium and fibrous stroma, thus potentially reducing the breast cancer risk of TMIs. Further studies are warranted to elucidate the effect of TT on breast density and breast cancer risk. Summary Box: Very little is known about the effect of gender-affirming testosterone therapy on cancer risks, such as breast cancer.Epidemiological studies had different conclusions about the association between testosterone and breast cancer in cisgender women (positive association) and trans masculine individuals (inverse association).More laboratory-based research are needed to understand the effect of testosterone on breast cancer risk in the understudied trans masculine population.Our study provides quantitative histological evidence to support prior epidemiological reports that testosterone may reduce breast cancer risk in trans masculine individuals.

20.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622115

RESUMEN

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Asunto(s)
Proteínas de Ciclo Celular , Proteómica , Ciclo Celular/fisiología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Estabilidad Proteica , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA