Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 608(7921): 199-208, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859180

RESUMEN

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical cancer genotyping and longitudinal disease monitoring1. However, owing to past emphasis on targeted and low-resolution profiling approaches, our understanding of the distinct populations that comprise bulk ctDNA is incomplete2-12. Here we perform deep whole-genome sequencing of serial plasma and synchronous metastases in patients with aggressive prostate cancer. We comprehensively assess all classes of genomic alterations and show that ctDNA contains multiple dominant populations, the evolutionary histories of which frequently indicate whole-genome doubling and shifts in mutational processes. Although tissue and ctDNA showed concordant clonally expanded cancer driver alterations, most individual metastases contributed only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal population restructuring converging solely on AR augmentation as the dominant genomic driver of acquired treatment resistance. Finally, we leverage nucleosome footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, including treatment-induced changes in AR transcription factor signalling activity. Our results provide insights into cancer biology and show that liquid biopsy can be used as a tool for comprehensive multi-omic discovery.


Asunto(s)
ADN Tumoral Circulante , Resistencia a Antineoplásicos , Genoma Humano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Neoplasias de la Próstata , Antagonistas de Receptores Androgénicos/farmacología , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Células Clonales/metabolismo , Células Clonales/patología , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Genómica/métodos , Humanos , Biopsia Líquida/métodos , Masculino , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Nucleosomas/genética , Nucleosomas/metabolismo , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Neoplásico/análisis , ARN Neoplásico/genética , Receptores Androgénicos/metabolismo
2.
Br J Cancer ; 130(1): 53-62, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980367

RESUMEN

BACKGROUND: CC-115, a dual mTORC1/2 and DNA-PK inhibitor, has promising antitumour activity when combined with androgen receptor (AR) inhibition in pre-clinical models. METHODS: Phase 1b multicentre trial evaluating enzalutamide with escalating doses of CC-115 in AR inhibitor-naive mCRPC patients (n = 41). Primary endpoints were safety and RP2D. Secondary endpoints included PSA response, time-to-PSA progression, and radiographic progression. RESULTS: Common adverse effects included rash (31.7% Grades 1-2 (Gr); 31.7% Gr 3), pruritis (43.9% Gr 1-2), diarrhoea (37% Gr 1-2), and hypertension (17% Gr 1-2; 9.8% Gr 3). CC-115 RP2D was 5 mg twice a day. In 40 evaluable patients, 80% achieved ≥50% reduction in PSA (PSA50), and 58% achieved ≥90% reduction in PSA (PSA90) by 12 weeks. Median time-to-PSA progression was 14.7 months and median rPFS was 22.1 months. Stratification by PI3K alterations demonstrated a non-statistically significant trend towards improved PSA50 response (PSA50 of 94% vs. 67%, p = 0.08). Exploratory pre-clinical analysis suggested CC-115 inhibited mTOR pathway strongly, but may be insufficient to inhibit DNA-PK at RP2D. CONCLUSIONS: The combination of enzalutamide and CC-115 was well tolerated. A non-statistically significant trend towards improved PSA response was observed in patients harbouring PI3K pathway alterations, suggesting potential predictive biomarkers of response to a PI3K/AKT/mTOR pathway inhibitor. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02833883.


Asunto(s)
Benzamidas , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Pirazinas , Triazoles , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Antígeno Prostático Específico/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Nitrilos/uso terapéutico , ADN/uso terapéutico
3.
Prostate ; 82 Suppl 1: S25-S36, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35657159

RESUMEN

BACKGROUND: Genomic alterations to the androgen receptor (AR) are common in metastatic castration-resistant prostate cancer (mCRPC). AR copy number amplifications, ligand-binding domain missense mutations, and intronic structural rearrangements can all drive resistance to approved AR pathway inhibitors and their detection via tissue or liquid biopsy is linked to clinical outcomes. With an increasingly crowded treatment landscape, there is hope that AR genomic alterations can act as prognostic and/or predictive biomarkers to guide patient management. METHODS: In this review, we evaluate the current evidence for AR genomic alterations as clinical biomarkers in mCRPC, focusing on correlative studies that have used plasma circulating tumor DNA to characterize AR genotype. RESULTS: We highlight data that demonstrates the complexity of AR genotype within individual patients, and suggest that future studies should account for cancer clonal heterogeneity and variable tumor content in liquid biopsy samples. Given the potential for cooccurrence of multiple AR genomic alterations in the same or competing subclones of a patient, it is distinctly challenging to attribute blanket clinical significance to any individual alteration. This challenge is further complicated by the varied treatment exposures in contemporary patients, and the fact that AR genotype continues to evolve in the mCRPC setting across sequential lines of systemic therapy. CONCLUSIONS: As treatment access and liquid biopsy technology continues to improve, we posit that real-time measures of AR biology are likely to play a key role in emerging precision oncology strategies for metastatic prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Receptores Androgénicos/uso terapéutico , Biomarcadores de Tumor , Genómica , Humanos , Masculino , Medicina de Precisión , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo
4.
Prostate ; 82 Suppl 1: S73-S85, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35657158

RESUMEN

Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.


Asunto(s)
Neoplasias de la Próstata , Biomarcadores de Tumor/genética , Toma de Decisiones Clínicas , Genómica , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia
5.
Oncologist ; 27(11): e912-e915, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36166584

RESUMEN

BACKGROUND: Primary mediastinal nonseminoma germ cell tumors (PMNSGCT) are a subgroup of nonseminoma germ cell tumors (GCT) with poor prognosis. In this study, PMNSGCT-specific genomic landscape was analyzed and correlated with clinical outcomes. METHODS: DNA was extracted and sequenced from 28 archival tumor tissue of patients with mediastinal GCT (3 seminoma and 25 nonseminoma). Overall survival (OS) and association with gene alterations were estimated using the Kaplan-Meier and univariate Cox regression methods. RESULTS: Three patients (11%) had a karyotype XXY, 17/28 (61%) tumor samples presented chromosome 12p amplification. Somatic mutations were detected in 19/28 (68%) samples. The most frequently mutated genes were: TP53 (13/28; 46%), KIT (5/28; 18%), and KRAS (5/28; 18%). Deleterious TP53 alterations were associated with significantly reduced overall survival (HR: 7.16; P = .012). CONCLUSIONS: TP53 alterations are common in PMNSGCT and are associated with reduced overall survival, potentially underlying the poor sensitivity to chemotherapy observed in these patients.


Asunto(s)
Neoplasias del Mediastino , Neoplasias de Células Germinales y Embrionarias , Seminoma , Neoplasias Testiculares , Masculino , Humanos , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Seminoma/patología , Neoplasias del Mediastino/genética , Neoplasias del Mediastino/patología , Pronóstico , Proteína p53 Supresora de Tumor/genética
6.
Cancer ; 127(12): 1965-1973, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33690902

RESUMEN

BACKGROUND: DNA damage repair mutations (DDRm) are common in patients with metastatic castration-resistant prostate cancer (mCRPC). The optimal standard therapy for this population is not well described. METHODS: A multi-institutional, retrospective study of patients with mCRPC and DDRm was conducted. Patient data, including systemic therapies and responses, were collected. The decline in prostate-specific antigen ≥ 50% from baseline (PSA50) and overall survival (OS) from the treatment start were compared by mutation and treatment type. A multivariable Cox proportional hazards model for OS was created that controlled for DDRm, first-line treatment received for mCRPC, and clinical factors. RESULTS: The most common DDRm observed among 149 men with mCRPC were BRCA1/2 (44%), CDK12 (32%), and ATM (15%). The majority received first-line abiraterone (40%) or enzalutamide (30%). The PSA50 rate with first-line abiraterone was lower for CDK12 (52%) than BRCA1/2 (89%; P = .02). After first-line abiraterone or enzalutamide, the median OS was longest with second-line carboplatin-chemotherapy (38 months) in comparison with abiraterone or enzalutamide (33 months), docetaxel (17 months), or cabazitaxel (11 months; P = .02). PSA50 responses to carboplatin-based chemotherapy were higher for BRCA1/2 (79%) than ATM (14%; P = .02) or CDK12 (38%; P = .08). In a multivariable analysis, neither the specific DDRm type nor the first-line treatment was associated with improved OS. CONCLUSIONS: Responses to standard therapies were generally superior in patients with BRCA1/2 mutations and inferior in patients with ATM or CDK12 mutations. The DDRm type did not independently predict OS. After progression on first-line abiraterone or enzalutamide, carboplatin-based chemotherapy was associated with the longest OS. These findings may inform treatment discussions and clinical trial design and require prospective validation.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína BRCA1/genética , Carboplatino/uso terapéutico , Quinasas Ciclina-Dependientes/genética , Docetaxel/uso terapéutico , Humanos , Masculino , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios Retrospectivos , Resultado del Tratamiento
7.
Future Oncol ; 17(19): 2413-2429, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33769071

RESUMEN

Recent innovations in the treatment of metastatic prostate cancer have improved patient outcomes. Nonetheless, this disease remains fatal and additional treatment approaches are needed. Greater understanding of the molecular landscape of metastatic prostate cancer has revealed recurrent alterations in key pathways amenable to therapeutic targeting. One such pathway is DNA repair, particularly alterations in genes directly or indirectly associated with homologous recombination repair found in up to one-quarter of patients with metastatic castrate-resistant prostate cancer (mCRPC). Olaparib, an inhibitor of poly-ADP-ribose polymerase, has recently gained approval for the treatment of mCRPC harboring alterations in homologous recombination repair genes. This review will provide a summary of evidence regarding PARP inhibition in the treatment of mCRPC, with a specific focus on olaparib.


Lay abstract The genetic material in cells, called DNA, is continually exposed to factors which can damage it. This damage must be corrected, which is done through specific DNA damage repair pathways. Mutations, which can be inheritable or arise just in the cancer itself, can occur in genes involved in DNA damage repair that impair the repair process. In 20­30% of prostate cancers, mutations are involved in genes associated with the homologous recombination repair pathway which can be taken advantage of for therapeutic effect by targeting an alternate repair pathway involving a protein called PARP. Olaparib, an inhibitor of PARP, was recently shown to improve outcomes in patients with advanced, metastatic prostate cancer harboring mutations in homologous recombination repair genes and subsequently gained approval for the treatment of such patients. This review will provide a summary of evidence regarding PARP inhibition in the treatment of prostate cancer, with a specific focus on olaparib.


Asunto(s)
Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Humanos , Masculino , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Supervivencia sin Progresión , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Neoplasias de la Próstata Resistentes a la Castración/patología , Reparación del ADN por Recombinación/efectos de los fármacos
8.
Lancet Oncol ; 20(12): 1730-1739, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31727538

RESUMEN

BACKGROUND: Abiraterone acetate plus prednisone and enzalutamide are both used for the treatment of metastatic castration-resistant prostate cancer. We aimed to determine the best sequence in which to use both drugs, as well as their second-line efficacy. METHODS: In this multicentre, randomised, open-label, phase 2, crossover trial done in six cancer centres in British Columbia, Canada, we recruited patients aged 18 years or older with newly-diagnosed metastatic castration-resistant prostate cancer without neuroendocrine differentiation and Eastern Cooperative Oncology Group performance status 2 or less. Patients were randomly assigned (1:1) using a computer-generated random number table to receive either abiraterone acetate 1000 mg orally once daily plus prednisone 5 mg orally twice daily until PSA progression followed by crossover to enzalutamide 160 mg orally once daily (group A), or the opposite sequence (group B). Treatment was not masked to investigators or participants. Primary endpoints were time to second PSA progression and PSA response (≥30% decline from baseline) on second-line therapy, analysed by intention-to-treat in all randomly assigned patients and in patients who crossed over, respectively. The trial is registered with ClinicalTrials.gov, NCT02125357. FINDINGS: Between Oct 21, 2014, and Dec 13, 2016, 202 patients were enrolled and randomly assigned to either group A (n=101) or group B (n=101). At the time of data cutoff, 73 (72%) patients in group A and 75 (74%) patients in group B had crossed over. Time to second PSA progression was longer in group A than in group B (median 19·3 months [95% CI 16·0-30·5] vs 15·2 months [95% CI 11·9-19·8] months; hazard ratio 0·66, 95% CI 0·45-0·97, p=0·036), at a median follow-up of 22·8 months (IQR 10·3-33·4). PSA responses to second-line therapy were seen in 26 (36%) of 73 patients for enzalutamide and three (4%) of 75 for abiraterone (χ2 p<0·0001). The most common grade 3-4 adverse events throughout the trial were hypertension (27 [27%] of 101 patients in group A vs 18 [18%] of 101 patients in group B) and fatigue (six [10%] vs four [4%]). Serious adverse events were reported in 15 (15%) of 101 patients in group A and 20 (20%) of 101 patients in group B. There were no treatment-related deaths. INTERPRETATION: Enzalutamide showed activity as a second-line novel androgen receptor pathway inhibitor, whereas abiraterone acetate did not, leading to a longer time to second PSA progression for the sequence of abiraterone followed by enzalutamide than with the opposite treatment sequence. Our data suggest that using a sequencing strategy of abiraterone acetate followed by enzalutamide provides the greatest clinical benefit. FUNDING: Canadian Cancer Society Research Institute, Prostate Cancer Canada, Movember Foundation, Prostate Cancer Foundation, Terry Fox New Frontiers Program, BC Cancer Foundation, Jane and Aatos Erkko Foundation, Janssen, and Astellas.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/normas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Acetato de Abiraterona/administración & dosificación , Anciano , Anciano de 80 o más Años , Benzamidas , Estudios Cruzados , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Nitrilos , Feniltiohidantoína/administración & dosificación , Feniltiohidantoína/análogos & derivados , Prednisona/administración & dosificación , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/patología , Tasa de Supervivencia
9.
Int J Cancer ; 145(12): 3453-3461, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125117

RESUMEN

Prostatic small cell neuroendocrine carcinoma (SC/NE) is well studied in metastatic castration-resistant prostate cancer; however, it is not well characterized in the primary setting. Herein, we used gene expression profiling of SC/NE prostate cancer (PCa) to develop a 212 gene signature to identify treatment-naïve primary prostatic tumors that are molecularly analogous to SC/NE (SC/NE-like PCa). The 212 gene signature was tested in several cohorts confirming similar molecular profile between prostatic SC/NE and small cell lung carcinoma. The signature was then translated into a genomic score (SCGScore) using modularized logistic regression modeling and validated in four independent cohorts achieving an average AUC >0.95. The signature was evaluated in more than 25,000 primary adenocarcinomas to characterize the biology, prognosis and potential therapeutic response of predicted SC/NE-like tumors. Assessing SCGScore in a prospective cohort of 17,967 RP and 6,697 biopsy treatment-naïve primary tumors from the Decipher Genomic Resource Information Database registry, approximately 1% of the patients were found to have a SC/NE-like transcriptional profile, whereas 0.5 and 3% of GG1 and GG5 patients respectively showed to be SC/NE-like. More than 80% of these patients are genomically high-risk based on Decipher score. Interrogating in vitro drug sensitivity analyses, SC/NE-like prostatic tumors showed higher response to PARP and HDAC inhibitors.


Asunto(s)
Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transcriptoma/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Pronóstico , Estudios Prospectivos , Próstata/patología
10.
Oncologist ; 24(4): 444-448, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30541755

RESUMEN

Prostate cancer is the second leading cause of cancer death in American men. Despite the common nature of this disease, there is a poor understanding of biomarkers that predict responsiveness to immunotherapeutic agents such as the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors. Herein we describe a case of complete remission with pembrolizumab therapy in a metastatic castrate-resistant prostate cancer patient with a complex germline MSH2 alteration (Boland inversion) in association with a tumor demonstrating high microsatellite instability. Potential utility of high mutational burden assessed by an experimental circulating tumor DNA assay is also shown. The literature concerning biomarkers for PD-1 inhibition is reviewed, including data for various mismatch repair gene deficiencies, microsatellite instability, tumor mutational burden, PD-L1 3' untranslated region mutations, selected POLE mutations, and biallelic CDK12 mutations. Taken together, although prostate cancer is generally believed to be a tumor unresponsive to PD-1 inhibition, careful dissection of tumor biology is able to provide an approach toward predictive biomarkers that has the potential for expanded clinical utility. KEY POINTS: Biomarkers for anti-PD1 and anti-PDL1 therapy are poorly defined in prostate cancer.Recent advances are defining new important classes of responsive patients.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Enzimas Reparadoras del ADN/genética , Inestabilidad de Microsatélites , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias de la Próstata Resistentes a la Castración/genética , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/secundario
11.
BJU Int ; 123(5): 769-776, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30281887

RESUMEN

Failure of effective DNA damage repair is a hallmark of cancer, but was previously underappreciated as a driver of aggressive prostate cancer. However, recent international sequencing efforts have revealed that both germline and somatic alterations within the homologous recombination and mismatch repair pathways are relatively common in lethal metastatic disease. BRCA2 gene alterations are particularly prevalent and are linked to poor prognosis as well as poor responses to systemic therapy for castration-resistant prostate cancer, although there is conflicting support for the latter. Defective DNA repair contributes to tumour heterogeneity, evolution and progression, but there are high hopes that management of this aggressive subset will be transformed by biomarker-driven use of poly-ADP ribose polymerase (PARP) inhibitors and platinum-based chemotherapy. In this review, we detail the relationship between DNA repair defects and prostate cancer, highlighting the prevalence of mutations in key genes and their controversial association with clinical outcomes.


Asunto(s)
Análisis Mutacional de ADN , Reparación del ADN , Detección Precoz del Cáncer/métodos , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Antagonistas de Andrógenos/uso terapéutico , Proteína BRCA2 , Biomarcadores de Tumor , ADN Tumoral Circulante , Reparación del ADN/efectos de los fármacos , Humanos , Masculino , Valor Predictivo de las Pruebas , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología
12.
J Pathol ; 246(2): 244-253, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30015382

RESUMEN

Small-cell prostate carcinoma (SCPC) is an aggressive malignancy that is managed similarly to small-cell lung cancer. SCPC can evolve from prostate adenocarcinoma in response to androgen deprivation therapy, but, in rare cases, is present at initial cancer diagnosis. The molecular aetiology of de novo SCPC is incompletely understood, owing to the scarcity of tumour tissue and the short life-expectancy of patients. Through a retrospective search of our regional oncology pharmacy database, we identified 18 patients diagnosed with de novo SCPC between 2004 and 2017. Ten patients had pure SCPC pathology, and the remainder had some admixed adenocarcinoma foci, but all were treated with first-line platinum-based chemotherapy. The median overall survival was 28 months. We performed targeted DNA sequencing, whole exome sequencing and mRNA profiling on formalin-fixed paraffin-embedded archival tumour tissue. We observed frequent biallelic deletion and/or mutation of the tumour suppressor genes TP53, RB1, and PTEN, similarly to what was found in treatment-related SCPC. Indeed, at the RNA level, pure de novo SCPC closely resembled treatment-related SCPC. However, five patients had biallelic loss of DNA repair genes, including BRCA1, BRCA2, ATM, and MSH2/6, potentially underlying the high genomic instability of this rare disease variant. Two patients with pure de novo SCPC harboured ETS gene rearrangements involving androgen-driven promoters, consistent with the evolution of de novo SCPC from an androgen-driven ancestor. Overall, our results reveal a highly aggressive molecular landscape that underlies this unusual pathological variant, and suggest opportunities for targeted therapy strategies in a disease with few treatment options. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Pequeñas/genética , Reparación del ADN , Genes Supresores de Tumor , Inestabilidad Genómica , Neoplasias Complejas y Mixtas/genética , Neoplasias de la Próstata/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboplatino/uso terapéutico , Carcinoma de Células Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/mortalidad , Carcinoma de Células Pequeñas/patología , Cisplatino/uso terapéutico , Bases de Datos Factuales , Etopósido/farmacología , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Complejas y Mixtas/tratamiento farmacológico , Neoplasias Complejas y Mixtas/mortalidad , Neoplasias Complejas y Mixtas/patología , Fenotipo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento
13.
Bioinformatics ; 33(1): 26-34, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27531099

RESUMEN

MOTIVATION: Successful development and application of precision oncology approaches require robust elucidation of the genomic landscape of a patient's cancer and, ideally, the ability to monitor therapy-induced genomic changes in the tumour in an inexpensive and minimally invasive manner. Thanks to recent advances in sequencing technologies, 'liquid biopsy', the sampling of patient's bodily fluids such as blood and urine, is considered as one of the most promising approaches to achieve this goal. In many cancer patients, and especially those with advanced metastatic disease, deep sequencing of circulating cell free DNA (cfDNA) obtained from patient's blood yields a mixture of reads originating from the normal DNA and from multiple tumour subclones-called circulating tumour DNA or ctDNA. The ctDNA/cfDNA ratio as well as the proportion of ctDNA originating from specific tumour subclones depend on multiple factors, making comprehensive detection of mutations difficult, especially at early stages of cancer. Furthermore, sensitive and accurate detection of single nucleotide variants (SNVs) and indels from cfDNA is constrained by several factors such as the sequencing errors and PCR artifacts, and mapping errors related to repeat regions within the genome. In this article, we introduce SiNVICT, a computational method that increases the sensitivity and specificity of SNV and indel detection at very low variant allele frequencies. SiNVICT has the capability to handle multiple sequencing platforms with different error properties; it minimizes false positives resulting from mapping errors and other technology specific artifacts including strand bias and low base quality at read ends. SiNVICT also has the capability to perform time-series analysis, where samples from a patient sequenced at multiple time points are jointly examined to report locations of interest where there is a possibility that certain clones were wiped out by some treatment while some subclones gained selective advantage. RESULTS: We tested SiNVICT on simulated data as well as prostate cancer cell lines and cfDNA obtained from castration-resistant prostate cancer patients. On both simulated and biological data, SiNVICT was able to detect SNVs and indels with variant allele percentages as low as 0.5%. The lowest amounts of total DNA used for the biological data where SNVs and indels could be detected with very high sensitivity were 2.5 ng on the Ion Torrent platform and 10 ng on Illumina. With increased sequencing and mapping accuracy, SiNVICT might be utilized in clinical settings, making it possible to track the progress of point mutations and indels that are associated with resistance to cancer therapies and provide patients personalized treatment. We also compared SiNVICT with other popular SNV callers such as MuTect, VarScan2 and Freebayes. Our results show that SiNVICT performs better than these tools in most cases and allows further data exploration such as time-series analysis on cfDNA sequencing data. AVAILABILITY AND IMPLEMENTATION: SiNVICT is available at: https://sfu-compbio.github.io/sinvictSupplementary information: Supplementary data are available at Bioinformatics online. CONTACT: cenk@sfu.ca.


Asunto(s)
Análisis Mutacional de ADN/métodos , ADN de Neoplasias/sangre , Mutación INDEL , Neoplasias/genética , Mutación Puntual , Programas Informáticos , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Neoplasias/sangre , Sensibilidad y Especificidad
14.
J Natl Compr Canc Netw ; 16(8): 933-937, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30099369

RESUMEN

Background: PARP inhibition is a promising therapeutic strategy for the treatment of men with metastatic castration-resistant prostate cancer whose tumors harbor homologous recombination DNA repair gene alterations. However, questions remain for many practicing clinicians about which patients are ideally suited for PARP inhibitor treatment. This report details our institutional experience using PARP inhibitor therapy in patients whose tumors harbored specific DNA repair gene alterations. Patients and Methods: We performed a retrospective chart review to identify patients at Oregon Health & Science University who were treated with PARP inhibition. We identified 8 patients and determined the impact of the specific DNA repair gene alterations on tumor response and time on treatment with PARP inhibition. Results: A number of DNA repair gene alterations were identified. Three patients had pathogenic BRCA2 mutations and one had a BRCA2 mutation of uncertain significance. Conversely, the 4 other patients' tumors harbored alterations in other DNA repair genes, none of which were clearly pathogenic. A statistically significant difference in benefit was seen between patients whose tumors harbored BRCA2 gene alterations and those whose tumors did not, as measured by >50% decline in prostate-specific antigen levels (100% vs 0%; P=.03) and duration on therapy (31.4 vs 6.4 weeks; P=.03). Conclusions: Our results demonstrate that not all DNA repair alterations are equally predictive of PARP inhibitor response. Importantly, all responding patients had tumors harboring BRCA2 DNA repair alterations, including one without a known pathogenic mutation. Conversely, among the 4 nonresponders, several DNA repair alterations in genes other than BRCA2 were identified that were not clearly pathogenic. This demonstrates the need to carefully examine the functional relevance of the DNA repair alterations identified, especially in genes other than BRCA2, when considering patients for PARP inhibitor treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Reparación del ADN/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Anciano , Proteína BRCA2/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios Retrospectivos , Resultado del Tratamiento
15.
Int J Mol Sci ; 17(9)2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27618023

RESUMEN

Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes.


Asunto(s)
Biomarcadores de Tumor/sangre , Ensayos Clínicos como Asunto , ADN de Neoplasias/sangre , ADN/sangre , Células Neoplásicas Circulantes/patología , Humanos , Células Neoplásicas Circulantes/metabolismo
16.
Genome Res ; 22(11): 2250-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22745232

RESUMEN

Complex genomic rearrangements (CGRs) are emerging as a new feature of cancer genomes. CGRs are characterized by multiple genomic breakpoints and thus have the potential to simultaneously affect multiple genes, fusing some genes and interrupting other genes. Analysis of high-throughput whole-genome shotgun sequencing (WGSS) is beginning to facilitate the discovery and characterization of CGRs, but further development of computational methods is required. We have developed an algorithmic method for identifying CGRs in WGSS data based on shortest alternating paths in breakpoint graphs. Aiming for a method with the highest possible sensitivity, we use breakpoint graphs built from all WGSS data, including sequences with ambiguous genomic origin. Since the majority of cell function is encoded by the transcriptome, we target our search to find CGRs that underlie fusion transcripts predicted from matched high-throughput cDNA sequencing (RNA-seq). We have applied our method, nFuse, to the discovery of CGRs in publicly available data from the well-studied breast cancer cell line HCC1954 and primary prostate tumor sample 963. We first establish the sensitivity and specificity of the nFuse breakpoint prediction and scoring method using breakpoints previously discovered in HCC1954. We then validate five out of six CGRs in HCC1954 and two out of two CGRs in 963. We show examples of gene fusions that would be difficult to discover using methods that do not account for the existence of CGRs, including one important event that was missed in a previous study of the HCC1954 genome. Finally, we illustrate how CGRs may be used to infer the gene expression history of a tumor.


Asunto(s)
Algoritmos , Rotura Cromosómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Neoplasias de la Mama/genética , Línea Celular Tumoral , ADN de Neoplasias , Femenino , Fusión Génica , Genoma Humano , Humanos , Masculino , Neoplasias de la Próstata/genética , Transcriptoma , Translocación Genética
17.
BMC Bioinformatics ; 15: 78, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24646301

RESUMEN

BACKGROUND: Chromothripsis, a newly discovered type of complex genomic rearrangement, has been implicated in the evolution of several types of cancers. To date, it has been described in bone cancer, SHH-medulloblastoma and acute myeloid leukemia, amongst others, however there are still no formal or automated methods for detecting or annotating it in high throughput sequencing data. As such, findings of chromothripsis are difficult to compare and many cases likely escape detection altogether. RESULTS: We introduce ShatterProof, a software tool for detecting and quantifying chromothriptic events. ShatterProof takes structural variation calls (translocations, copy-number variations, short insertions and loss of heterozygosity) produced by any algorithm and using an operational definition of chromothripsis performs robust statistical tests to accurately predict the presence and location of chromothriptic events. Validation of our tool was conducted using clinical data sets including matched normal, prostate cancer samples in addition to the colorectal cancer and SCLC data sets used in the original description of chromothripsis. CONCLUSIONS: ShatterProof is computationally efficient, having low memory requirements and near linear computation time. This allows it to become a standard component of sequencing analysis pipelines, enabling researchers to routinely and accurately assess samples for chromothripsis. Source code and documentation can be found at http://search.cpan.org/~sgovind/Shatterproof.


Asunto(s)
Aberraciones Cromosómicas , Reordenamiento Génico/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Algoritmos , Variaciones en el Número de Copia de ADN/genética , Humanos , Masculino , Neoplasias/genética , Análisis de Secuencia de ADN
19.
J Pathol ; 231(1): 1-3, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23744564

RESUMEN

Chromothripsis is a one-step catastrophic event which plays an important role during cancer development. During chromothripsis, tens to hundreds of genomic rearrangements can occur within localized regions of the genome, and lead to the simultaneous creation of multiple cancer-driving aberrations. Given that chromothripsis has a cancer-wide incidence of 2-3%, its recent discovery has significant implications for our understanding of tumour biology and evolution.


Asunto(s)
Aberraciones Cromosómicas , Reordenamiento Génico , Genoma Humano , Neoplasias/genética , Transformación Celular Neoplásica , Humanos
20.
JCO Precis Oncol ; 8: e2300654, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38547422

RESUMEN

Clinical genomic testing of patient germline, tumor tissue, or plasma cell-free DNA can enable a personalized approach to cancer management and treatment. In prostate cancer (PCa), broad genotyping tests are now widely used to identify germline and/or somatic alterations in BRCA2 and other DNA damage repair genes. Alterations in these genes can confer cancer sensitivity to poly (ADP-ribose) polymerase inhibitors, are linked with poor prognosis, and can have potential hereditary cancer implications for family members. However, there is huge variability in genomic tests and reporting standards, meaning that for successful implementation of testing in clinical practice, end users must carefully select the most appropriate test for a given patient and critically interpret the results. In this white paper, we outline key pre- and post-test considerations for choosing a genomic test and evaluating reported variants, specifically for patients with advanced PCa. Test choice must be based on clinical context and disease state, availability and suitability of tumor tissue, and the genes and regions that are covered by the test. We describe strategies to recognize false positives or negatives in test results, including frameworks to assess low tumor fraction, subclonal alterations, clonal hematopoiesis, and pathogenic versus nonpathogenic variants. We assume that improved understanding among health care professionals and researchers of the nuances associated with genomic testing will ultimately lead to optimal patient care and clinical decision making.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Genes BRCA2 , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA