Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(6): 1379-1392.e14, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773315

RESUMEN

Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz-/- follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oogénesis/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula , Núcleo Celular/metabolismo , Femenino , Células de la Granulosa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Oocitos/metabolismo , Oocitos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores
2.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788748

RESUMEN

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Interferón Tipo I/metabolismo , Neumonía Viral/inmunología , Receptores Inmunológicos/metabolismo , Adolescente , Adulto , Anciano , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Neumonía Viral/diagnóstico , Neumonía Viral/virología , RNA-Seq , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual
3.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232281

RESUMEN

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Asunto(s)
Adenosina Trifosfato , Metano , Metano/metabolismo , Transporte de Electrón , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Transporte Biológico , Methanosarcina/metabolismo
4.
Hepatology ; 79(1): 149-166, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676481

RESUMEN

BACKGROUND AND AIMS: Hyperlipidemia has been extensively recognized as a high-risk factor for NASH; however, clinical susceptibility to NASH is highly heterogeneous. The key controller(s) of NASH susceptibility in patients with hyperlipidemia has not yet been elucidated. Here, we aimed to reveal the key regulators of NASH in patients with hyperlipidemia and to explore its role and underlying mechanisms. APPROACH AND RESULTS: To identify the predominant suppressors of NASH in the setting of hyperlipidemia, we collected liver biopsy samples from patients with hyperlipidemia, with or without NASH, and performed RNA-sequencing analysis. Notably, decreased Lineage specific Interacting Motif domain only 7 (LMO7) expression robustly correlated with the occurrence and severity of NASH. Although overexpression of LMO7 effectively blocked hepatic lipid accumulation and inflammation, LMO7 deficiency in hepatocytes greatly exacerbated diet-induced NASH progression. Mechanistically, lysine 48 (K48)-linked ubiquitin-mediated proteasomal degradation of tripartite motif-containing 47 (TRIM47) and subsequent inactivation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) cascade are required for the protective function of LMO7 in NASH. CONCLUSIONS: These findings provide proof-of-concept evidence supporting LMO7 as a robust suppressor of NASH in the context of hyperlipidemia, indicating that targeting the LMO7-TRIM47 axis is a promising therapeutic strategy for NASH.


Asunto(s)
Hiperlipidemias , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Hiperlipidemias/complicaciones , Hígado/patología , Inflamación/metabolismo , Hepatocitos/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo
5.
J Proteome Res ; 23(1): 500-509, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38097511

RESUMEN

Lung cancer is the leading cause of cancer-related death, with high morbidity and mortality rates due to the lack of reliable methods for diagnosing lung cancer at an early stage. Low-dose computed tomography can help detect abnormal areas in the lungs, but only 16% of cases are diagnosed early. Tests for lung cancer markers are often employed to determine genetic expression or mutations in lung carcinogenesis. Serum glycome analysis is a promising new method for early lung cancer diagnosis as glycopatterns exhibit significant differences in lung cancer patients. In this study, we employed a solid-phase chemoenzymatic method to systematically compare glycopatterns in benign cases, adenocarcinoma before and after surgery, and advanced stages of adenocarcinoma. Our findings indicate that serum high-mannose levels are elevated in both benign cases and adenocarcinoma, while complex N-glycans, including fucose and 2,6-linked sialic acid, are downregulated in the serum. Subsequently, we developed an algorithm that utilizes 16 altered N-glycans, 7 upregulated and 9 downregulated, to generate a score based on their intensity. This score can predict the stages of cancer progression in patients through glycan characterization. This methodology offers a potential means of diagnosing lung cancer through serum glycome analysis.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Polisacáridos/metabolismo , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Fucosa
6.
Biochem Biophys Res Commun ; 726: 150229, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38908346

RESUMEN

OBJECTIVE: Mesenchymal stem cells (MSCs) can treat osteoarthritis (OA), but their therapeutic efficacy is poor to date due to low migration efficiency. This study aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) could ameliorate cartilage repair efficiency through facilitating the migration of MSCs via hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis regulatory pathway in OA model rats. METHODS: OA rats were treated with MSCs alone or in combination with UTMD, respectively, for 4 weeks. Cartilage histopathology, MSCs migration efficiency, von Frey fiber thresholds, and the expression levels of collagen II and MMP-13 were measured. Further, MSCs were extracted from the bone marrow of rats, cocultured with osteoarthritic chondrocytes, transfected to siRNA-HIF-1α, and subjected to UTMD for 4 days. Glucose consumption, lactate production, and cell migration efficiency were assessed. The protein expression levels of HIF-1α, HK2, PKM2, and GLUT1 were measured, respectively. RESULTS: In OA rat model, NC-MSCs + UTMD improved migration efficiency, increased collagen II expression, decreased MMP-13 expression, and delayed osteoarthritis progression. Silencing HIF-1α attenuated the effects induced by UTMD. In vitro, UTMD led to increases in MSC activity and migration, glucose consumption, lactate production, and the protein expression of HIF-1α, HK2, PKM2, and GLUT1 expression, all of which were reversed upon HIF-1α silencing. CONCLUSION: UTMD enhances MSCs migration and improves cartilage repair efficiency through the HIF-1α-mediated glycolytic regulatory pathway, providing a novel therapy strategy for knee osteoarthritis.


Asunto(s)
Movimiento Celular , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células Madre Mesenquimatosas , Microburbujas , Osteoartritis , Ratas Sprague-Dawley , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratas , Osteoartritis/metabolismo , Osteoartritis/terapia , Osteoartritis/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Ondas Ultrasónicas , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Células Cultivadas
7.
Appl Environ Microbiol ; : e0089024, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940564

RESUMEN

Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.

8.
Am J Kidney Dis ; 83(1): 9-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37678743

RESUMEN

RATIONALE & OBJECTIVE: Chronic kidney disease (CKD) leads to lipid and metabolic abnormalities, but a comprehensive investigation of lipids, lipoprotein particles, and circulating metabolites associated with the risk of CKD has been lacking. We examined the associations of nuclear magnetic resonance (NMR)-based metabolomics data with CKD risk in the UK Biobank study. STUDY DESIGN: Observational cohort study. SETTING & PARTICIPANTS: A total of 91,532 participants in the UK Biobank Study without CKD and not receiving lipid-lowering therapy. EXPOSURE: Levels of metabolites including lipid concentration and composition within 14 lipoprotein subclasses, as well as other metabolic biomarkers were quantified via NMR spectroscopy. OUTCOME: Incident CKD identified using ICD codes in any primary care data, hospital admission records, or death register records. ANALYTICAL APPROACH: Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. RESULTS: We identified 2,269 CKD cases over a median follow-up period of 13.1 years via linkage with the electronic health records. After adjusting for covariates and correcting for multiple testing, 90 of 142 biomarkers were significantly associated with incident CKD. In general, higher concentrations of very-low-density lipoprotein (VLDL) particles were associated with a higher risk of CKD whereas higher concentrations of high-density lipoprotein (HDL) particles were associated with a lower risk of CKD. Higher concentrations of cholesterol, phospholipids, and total lipids within VLDL were associated with a higher risk of CKD, whereas within HDL they were associated with a lower risk of CKD. Further, higher triglyceride levels within all lipoprotein subclasses, including all HDL particles, were associated with greater risk of CKD. We also identified that several amino acids, fatty acids, and inflammatory biomarkers were associated with risk of CKD. LIMITATIONS: Potential underreporting of CKD cases because of case identification via electronic health records. CONCLUSIONS: Our findings highlight multiple known and novel pathways linking circulating metabolites to the risk of CKD. PLAIN-LANGUAGE SUMMARY: The relationship between individual lipoprotein particle subclasses and lipid-related traits and risk of chronic kidney disease (CKD) in general population is unclear. Using data from 91,532 participants in the UK Biobank, we evaluated the associations of metabolites measured using nuclear magnetic resonance testing with the risk of CKD. We identified that 90 out of 142 lipid biomarkers were significantly associated with incident CKD. We found that very-low-density lipoproteins, high-density lipoproteins, the lipid concentration and composition within these lipoproteins, triglycerides within all the lipoprotein subclasses, fatty acids, amino acids, and inflammation biomarkers were associated with CKD risk. These findings advance our knowledge about mechanistic pathways that may contribute to the development of CKD.


Asunto(s)
Lipoproteínas , Insuficiencia Renal Crónica , Humanos , Lipoproteínas/química , Lipoproteínas HDL/química , Espectroscopía de Resonancia Magnética/métodos , Lipoproteínas VLDL/química , Triglicéridos , Biomarcadores , Insuficiencia Renal Crónica/epidemiología
9.
Langmuir ; 40(6): 3063-3073, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38308649

RESUMEN

The original water in the coal rock pores plays a controlling role in the occurrence of gas. Furthermore, during the hydraulic fracturing process, pressurized fracturing fluid with a higher pressure than the original pore pressure in the fractures drives the fracturing fluid to infiltrate into the coal rock pores, thereby altering the occurrence pattern of gas and water in the original pores. However, due to the limitations of the indoor simulation device, a systematic conclusion on the impact of the original pore water and imbibition fracturing fluid on coalbed methane reservoirs has not yet been formed. In this paper, an integrated device combining displacement and low-field nuclear magnetic resonance was employed using underground cylindrical coal rock samples as experimental subjects. Experimental conditions were maintained at a temperature of 30 °C, a confining pressure of 23 MPa, and an approximate reservoir pressure of 15 MPa. The initial water saturation levels were altered to 0, 27.88, and 42.18% to replicate the conditions of a coalbed methane reservoir at a depth of approximately 1200 m. Fracturing fluid with a pressure of 18 MPa was injected into the experimental samples to simulate the impact of the fracturing fluid on the original reservoir during hydraulic fracturing. This allowed for a realistic assessment of the influence of initial water saturation and fracturing fluid absorption on the coalbed methane recovery rate in the reservoir. The experimental results indicate that the imbibition process promotes the desorption of adsorbed gas, and the desorption amount of adsorbed gas increases with the increase in the original water saturation. This will result in an increase in the gas pressure within the pore system. The conditions of this experiment, in comparison to the previous ones, more closely resemble real reservoir conditions. This enables a realistic assessment of how the presence of the original water content and the absorption of the fracturing fluid affect gas occurrence within the reservoir.

10.
Bioorg Med Chem Lett ; 99: 129613, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38224754

RESUMEN

A series of bis-isatin conjugates with lysine linker were synthesized with the aim of probing their antiproliferative potential. All the newly synthesized derivatives (0-100 µM) were first screened against liver cancer cell lines(Huh1, H22, Huh7, Hepa1-6, HepG2, Huh6 and 97H) using CCK-8 assay. Results indicated that the derivative 4d exhibited the most potent activity against Huh1 (IC50 = 17.13 µM) and Huh7(IC50 = 8.265 µM). In vivo anti-tumor study showed that compound 4d effectively inhibited tumor growth in Huh1-induced xenograft mouse model; the anti-tumor effect of compound 4d (15 mg/kg) was comparable with sorafenib (20 mg/kg). H&E staining analysis and routine blood test and blood serum biochemistry examination was performed to confirm the safety of compound 4d in xenograft models. The mechanism of action of 4d on tumor growth inhibition was further investigated by RNA-Seq analysis, which indicates a positive regulation of autophagy signaling pathway, which was further confirmed with key biomarker expression of autophagy after 4d treatment. Our results suggest that the bis-isatin conjugate compound 4d is a promising tumor inhibitory agent for some liver cancer.


Asunto(s)
Antineoplásicos , Isatina , Neoplasias Hepáticas , Humanos , Animales , Ratones , Línea Celular Tumoral , Isatina/química , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Proliferación Celular , Relación Estructura-Actividad , Estructura Molecular
11.
Inorg Chem ; 63(15): 6767-6775, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569160

RESUMEN

Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.

12.
Thromb J ; 22(1): 29, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509585

RESUMEN

INTRODUCTION: Thrombosis in ANCA-associated vasculitis (AAV) was prevalent and has been neglected in Chinese patients. This study tried to describe the clinical characteristics, identify the risk factors, and investigate the causal relationship between AAV and venous thromboembolism (VTE) by two-sample Mendelian randomization (MR) analysis. METHODS: In this retrospective, observational study, we included all hospitalized AAV patients from Jan 2013 to Apr 2022 in Peking Union Medical College Hospital. We collected their clinical data for multivariate regression analysis to determine the risk factors for thrombosis. The nomogram was constructed by applying these risk factors to predict thrombosis in AAV patients. As for MR analysis, we selected single nucleotide polymorphisms (SNPs) related to AAV from published genome-wide association studies and extracted the outcome data containing deep vein thrombosis (DVT) and pulmonary embolism (PE) from the UK biobank. RESULTS: 1203 primary AAV patients were enrolled, and thrombosis occurred in 11.3%. Multivariate regression suggested that older than 65 years, EGPA, neurological involvement, lung involvement, significantly elevated serum creatinine (> 500µmol/L), and elevated D-dimer were associated with thrombosis in AAV patients. The model demonstrated satisfied discrimination with an AUC of 0.769 (95% CI, 0.726-0.812). MR analysis showed that EGPA could increase the risk of developing DVT and PE (OR = 1.0038, 95%CI = 1.0035-1.0041, P = 0.009). CONCLUSION: Thrombosis was not rare in Chinese patients with AAV. Renal damage and old age emerged as critical risk factors for thrombosis. EGPA might have a potential causal relationship with DVT and PE.

13.
Hum Brain Mapp ; 44(4): 1344-1358, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36214210

RESUMEN

This study proposed a semisupervised loss function named level-set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid-attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V-Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU-SVD, n = 360) and the multiple sclerosis cohort (HKU-MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer-assisted Intervention (MICCAI) WMH challenge database (MICCAI-WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI-CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU-SVD testing set (n = 20), DSC = 0.77 on the HKU-MS testing set (n = 5), and DSC = 0.78 on MICCAI-WMH testing set (n = 30). The segmentation results obtained by our semisupervised V-Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen , Cráneo , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen
14.
Small ; 19(46): e2302962, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37518765

RESUMEN

Retinal degeneration (RD) is an irreversible blinding disease that seriously affects patients' daily activities and mental health. Targeting hyperactivated microglia and regulating polarization are promising strategies for treating the disease. Mesenchymal stem cell (MSC) transplantation is proven to be an effective treatment due to its immunomodulatory and regenerative properties. However, the low efficiency of cell migration and integration of MSCs remains a major obstacle to clinical use. The goal of this study is to develop a nanodelivery system that targets hyperactivated microglia and inhibits their release of proinflammatory factors, to achieve durable neuroprotection. This approach is to engineer extracellular vesicles (EVs) isolated from MSC, modify them with a cyclic RGD (cRGD) peptide on their surface, and load them with an antagonist of the IL-1 receptor, anakinra. Comparing with non-engineered EVs, it is observed that engineered cRGD-EVs exhibit an increased targeting efficiency against hyperactivated microglia and strongly protected photoreceptors in experimental RD cells and animal models. This study provides a strategy to improve drug delivery to degenerated retinas and offers a promising approach to improve the treatment of RD through targeted modulation of the immune microenvironment via engineered cRGD-EVs.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/terapia , Degeneración Retiniana/metabolismo , Vesículas Extracelulares/metabolismo , Retina
15.
Brief Bioinform ; 22(1): 589-600, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-32022856

RESUMEN

The CCCTC-binding factor (CTCF) mediates transcriptional regulation and implicates epigenetic modifications in cancers. However, the systematically unveiling inverse regulatory relationship between CTCF and epigenetic modifications still remains unclear, especially the mechanism by which histone modification mediates CTCF binding. Here, we developed a systematic approach to investigate how epigenetic changes affect CTCF binding. Through integration analysis of CTCF binding in 30 cell lines, we concluded that CTCF generally binds with higher intensity in normal cell lines than that in cancers, and higher intensity in genome regions closed to transcription start sites. To facilitate the better understanding of their associations, we constructed linear mixed-effect models to analyze the effects of the epigenetic modifications on CTCF binding in four cancer cell lines and six normal cell lines, and identified seven epigenetic modifications as potential epigenetic patterns that influence CTCF binding intensity in promoter regions and six epigenetic modifications in enhancer regions. Further analysis of the effects in different locations revealed that the epigenetic regulation of CTCF binding was location-specific and cancer cell line-specific. Moreover, H3K4me2 and H3K9ac showed the potential association with immune regulation of disease. Taken together, our method can contribute to improve the understanding of the epigenetic regulation of CTCF binding and provide potential therapeutic targets for treating tumors associated with CTCF.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Epigénesis Genética , Código de Histonas , Factor de Unión a CCCTC/química , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Especificidad de Órganos , Unión Proteica
16.
Metab Eng ; 75: 91-99, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403709

RESUMEN

Cyanobacteria can directly convert carbon dioxide (CO2) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination. We achieved precise and efficient genome editing at a single-nucleotide resolution and demonstrated multiplex base editing in the model cyanobacterium Synechococcus elongatus. By using the base-editing tool, we successfully manipulated the glycogen metabolic pathway via the introduction of premature STOP codons in the relevant genes, building engineered strains with elevated potentials to produce chemicals and food from CO2. We present here the first report of base editing in the phylum of cyanobacteria, and a paradigm for applying CRISPR-Cas systems in bacteria. We believe that our work will accelerate the metabolic engineering and synthetic biology of cyanobacteria and drive more innovations to alleviate global climate change.


Asunto(s)
Edición Génica , Synechococcus , Dióxido de Carbono/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Redes y Vías Metabólicas , Sistemas CRISPR-Cas , Ingeniería Metabólica
17.
Appl Environ Microbiol ; 89(4): e0005323, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36975789

RESUMEN

The evolution and dissemination of antibiotic resistance genes (ARGs) are prompting severe health and environmental issues. While environmental processes, e.g., biological wastewater treatment, are key barriers to prevent the spread of ARGs, they are often sources of ARGs at the same time, requiring upgraded biotechnology. Here, we present VADER, a synthetic biology system for the degradation of ARGs based on CRISPR-Cas immunity, an archaeal and bacterial immune system for eliminating invading foreign DNAs, to be implemented for wastewater treatment processes. Navigated by programmable guide RNAs, VADER targets and degrades ARGs depending on their DNA sequences, and by employing an artificial conjugation machinery, IncP, it can be delivered via conjugation. The system was evaluated by degrading plasmid-borne ARGs in Escherichia coli and further demonstrated via the elimination of ARGs on the environmentally relevant RP4 plasmid in Pseudomonas aeruginosa. Next, a prototype conjugation reactor at a 10-mL scale was devised, and 100% of the target ARG was eliminated in the transconjugants receiving VADER, giving a proof of principle for the implementation of VADER in bioprocesses. By generating a nexus of synthetic biology and environmental biotechnology, we believe that our work is not only an enterprise for tackling ARG problems but also a potential solution for managing undesired genetic materials in general in the future. IMPORTANCE Antibiotic resistance has been causing severe health problems and has led to millions of deaths in recent years. Environmental processes, especially those of the wastewater treatment sector, are an important barrier to the spread of antibiotic resistance from the pharmaceutical industry, hospitals, or civil sewage. However, they have been identified as a nonnegligible source of antibiotic resistance at the same time, as antibiotic resistance with its main cause, antibiotic resistance genes (ARGs), may accumulate in biological treatment units. Here, we transplanted the CRISPR-Cas system, an immune system via programmable DNA cleavage, to tackle the antibiotic resistance problem raised in wastewater treatment processes, and we propose a new sector specialized in ARG removal with a conjugation reactor to implement the CRISPR-Cas system. Our study provides a new angle for resolving public health issues via the implementation of synthetic biology in environmental contexts at the process level.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Sistemas CRISPR-Cas , Farmacorresistencia Microbiana/genética , Aguas Residuales , Escherichia coli/genética
18.
Am J Nephrol ; 54(9-10): 399-407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37708862

RESUMEN

INTRODUCTION: Older patients with antineutrophil cytoplasmic autoantibody-associated vasculitis (AAV) commonly experience renal impairment and poor prognoses. This study aimed to establish a risk-scoring system for predicting composite renal outcomes in older patients with AAV. METHODS: This retrospective observational study included all patients with AAV hospitalized in a single-center tertiary hospital in China between January 2013 and April 2022. Patients aged ≥65 years were defined as older adults and short-term composite renal outcomes included a ≥25% reduction in estimated glomerular filtration rate (eGFR) (for AKI), renal replacement therapy, provision of renal replacement therapy (long-term dialysis, kidney transplant, or sustained eGFR <15 mL/min/1.73 m), or all-cause mortality. Patients were randomly divided into development and validation cohorts (2:1). Logistic regression analysis was performed in the development cohort to analyze risk factors. The scoring system was established accordingly and further validated in the validation cohort. RESULTS: 1,203 patients were enrolled in the study, among whom the older adult group accounted for 36% with a mean age of 71. The older adult group had a worse prognosis, a higher mortality rate, a higher rate of end-stage renal disease, and worsening renal function. Logistic regression showed that age >75 years, chronic heart disease, and elevated serum creatinine and D-dimer values were risk factors for poor prognosis in patients with AAV. The development and validation cohorts in patients with AAV produced area under the curve values of 0.82 (0.78-0.86) and 0.83 (0.77-0.89), respectively. CONCLUSION: We established a risk-scoring system based on baseline clinical characteristics to predict composite renal outcomes in patients with AAV. Our results suggest that more attention should be paid to older patients with severe renal impairment and active inflammation.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Fallo Renal Crónico , Insuficiencia Renal , Humanos , Anciano , Anticuerpos Anticitoplasma de Neutrófilos , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/terapia , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Riñón/fisiología , Fallo Renal Crónico/terapia , Pronóstico , Estudios Retrospectivos
19.
Nat Chem Biol ; 17(12): 1314-1323, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608293

RESUMEN

Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Lisina Acetiltransferasa 5/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Cromosomas/ultraestructura , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Mitosis , Unión Proteica , Conformación Proteica
20.
J Magn Reson Imaging ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149750

RESUMEN

BACKGROUND: Cerebral microbleeds (CMB) are indicators of severe cerebral small vessel disease (CSVD) that can be identified through hemosiderin-sensitive sequences in MRI. Specifically, quantitative susceptibility mapping (QSM) and deep learning were applied to detect CMBs in MRI. PURPOSE: To automatically detect CMB on QSM, we proposed a two-stage deep learning pipeline. STUDY TYPE: Retrospective. SUBJECTS: A total number of 1843 CMBs from 393 patients (69 ± 12) with cerebral small vessel disease were included in this study. Seventy-eight subjects (70 ± 13) were used as external testing. FIELD STRENGTH/SEQUENCE: 3 T/QSM. ASSESSMENT: The proposed pipeline consisted of two stages. In stage I, 2.5D fast radial symmetry transform (FRST) algorithm along with a one-layer convolutional network was used to identify CMB candidate regions in QSM images. In stage II, the V-Net was utilized to reduce false positives. The V-Net was trained using CMB and non CMB labels, which allowed for high-level feature extraction and differentiation between CMBs and CMB mimics like vessels. The location of CMB was assessed according to the microbleeds anatomical rating scale (MARS) system. STATISTICAL TESTS: The sensitivity and positive predicative value (PPV) were reported to evaluate the performance of the model. The number of false positive per subject was presented. RESULTS: Our pipeline demonstrated high sensitivities of up to 94.9% at stage I and 93.5% at stage II. The overall sensitivity was 88.9%, and the false positive rate per subject was 2.87. With respect to MARS, sensitivities of above 85% were observed for nine different brain regions. DATA CONCLUSION: We have presented a deep learning pipeline for detecting CMB in the CSVD cohort, along with a semi-automated MARS scoring system using the proposed method. Our results demonstrated the successful application of deep learning for CMB detection on QSM and outperformed previous handcrafted methods. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA