Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cell Mol Med ; 27(23): 3706-3716, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37950418

RESUMEN

Excessive productions of inflammatory cytokines and free radicals are involved in spinal cord injury (SCI). Fibroblast growth factor 5 (FGF5) is associated with inflammatory response and oxidative damage, and we herein intend to determine its function in SCI. Lentivirus was instilled to overexpress or knockdown FGF5 expression in mice. Compound C or H89 2HCl were used to suppress AMP-activated protein kinase (AMPK) or protein kinase A (PKA), respectively. FGF5 level was significantly decreased during SCI. FGF5 overexpression mitigated, while FGF5 silence further facilitated inflammatory response, oxidative damage and SCI. Mechanically, FGF5 activated AMPK to attenuate SCI in a cAMP/PKA-dependent manner, while inhibiting AMPK or PKA with pharmacological methods significantly abolished the neuroprotective effects of FGF5 against SCI. More importantly, serum FGF5 level was decreased in SCI patients, and elevated serum FGF5 level often indicate better prognosis. Our study identifies FGF5 as an effective therapeutic and prognostic target for SCI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Factor 5 de Crecimiento de Fibroblastos , Estrés Oxidativo , Traumatismos de la Médula Espinal , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Factor 5 de Crecimiento de Fibroblastos/genética , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ratones Noqueados , Masculino , Femenino , Adulto , Persona de Mediana Edad
2.
Oxid Med Cell Longev ; 2022: 8659587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602094

RESUMEN

Objective: Inflammation and oxidative stress are implicated in the pathogenesis of spinal cord injury (SCI). The present study is aimed at investigating the function and molecular basis of microRNA-299a-5p (miR-299a-5p) during SCI in mice. Methods: Mice were exposed to SCI surgery and then intrathecally injected with the agomir, antagomir, or matched negative controls of miR-299a-5p to overexpress or silence miR-299a-5p. To inhibit AMP-activated protein kinase (AMPK), mice were intraperitoneally injected with compound C (CC). To overexpress pH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), lentiviral vectors were used. Results: The miR-299a-5p expression in the spinal cord was dramatically reduced by SCI stimulation. The miR-299a-5p agomir prevents, while the miR-299a-5p antagomir exacerbates inflammation, oxidative stress, and SCI in mice. Mechanistically, we found that miR-299a-5p directly inhibited PHLPP1 and subsequently activated AMPK pathway. The PHLPP1 overexpression of AMPK inhibition with either genetic or pharmacologic methods dramatically abolished the miR-299a-5p agomir-mediated protective effects against SCI. Conclusion: miR-299a-5p protects against spinal cord injury through activating AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , MicroARNs , Traumatismos de la Médula Espinal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antagomirs/metabolismo , Inflamación/patología , Ratones , MicroARNs/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
3.
Free Radic Res ; 55(7): 853-864, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34323631

RESUMEN

Glioblastoma is one of the most frequent malignant tumors derived from the brain in adults with very poor prognosis. Ferroptosis is implicated in the initiation and progression of various tumors, including the glioblastoma. The present study aims to investigate the function of microRNA (miR)-670-3p in glioblastoma, and tries to demonstrate whether ferroptosis is involved in this process. Human glioblastoma cell lines, U87MG and A172, were transfected with the inhibitor, mimic and matched negative controls of miR-670-3p to manipulate intracellular miR-670-3p level. To validate the involvement of ferroptosis in miR-670-3p inhibitor-mediated tumor suppressive effects, ferrostain-1 and liproxstatin-1 were used to inhibit ferroptosis in the presence of miR-670-3p inhibitor. In addition, the small interfering RNA against acyl-CoA synthase long chain family member 4 (ACSL4) was used to knock down endogenous ACSL4 expression. To validate the combined effects between miR-670-3p inhibitor and temozolomide (TMZ), cells were pretreated with TMZ and then transfected with or without miR-670-3p inhibitor. miR-670-3p level was elevated in human glioblastoma, but decreased upon ferroptotic stimulation. miR-670-3p inhibitor suppressed, while miR-670-3p mimic promoted glioblastoma cell growth through modulating ferroptosis. Mechanistically, ACSL4 was required for the regulation on ferroptosis and growth of glioblastoma cells by miR-670-3p. Moreover, U87MG and A172 cells treated with miR-670-3p inhibitor showed an increased chemosensitivity to TMZ. We prove that miR-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4, and that inhibiting miR-670-3p can be an alternative, at least adjuvant strategy to treat glioblastoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Coenzima A Ligasas/antagonistas & inhibidores , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , MicroARNs/genética , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA