Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.373
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(5): 104660, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119745

RESUMEN

Mitochondrial antiviral signaling (MAVS) protein is a core signaling adapter in the retinoid acid-inducible gene-I-like receptor (RLR) signaling pathway that recruits downstream signaling factors, ultimately leading to the activation of type Ⅰ interferons. However, the mechanisms that modulate the RLR signaling pathway by manipulating MAVS are not fully understood. Previous studies suggested that tripartite motif 28 (TRIM28) participates in regulating innate immune signaling pathways by inhibiting the expression of immune-related genes at the transcriptional level. In this study, we characterized TRIM28 as a negative regulator of the RLR signaling pathway in a MAVS-dependent manner. Overexpression of TRIM28 inhibited the MAVS-induced production of type Ⅰ interferons and proinflammatory cytokines, while knocking down TRIM28 exerted the opposite effect. Mechanistically, TRIM28 targeted MAVS for proteasome-mediated degradation via K48-linked polyubiquitination. The RING domain of TRIM28, especially the cysteine residues at positions 65 and 68, was critical for the suppressive effect of TRIM28 on MAVS-mediated RLR signaling, while each of the C-terminal domains of TRIM28 contributed to its interaction with MAVS. Further investigation revealed that TRIM28 transferred ubiquitin chains to the K7, K10, K371, K420, and K500 residues of MAVS. Together, our results reveal a previously uncharacterized mechanism involving TRIM28 in fine-tuning innate immune responses and provide new insights into the mechanisms by which MAVS is regulated, which contribute to the understanding of the molecular mechanisms underlying immune homeostasis maintenance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Interferón Tipo I , Proteína 28 que Contiene Motivos Tripartito , Inmunidad Innata , Interferón Tipo I/genética , Transducción de Señal/genética , Ubiquitinación , Proteína 28 que Contiene Motivos Tripartito/genética , Proteínas Adaptadoras Transductoras de Señales/genética
2.
Cardiovasc Diabetol ; 23(1): 80, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402393

RESUMEN

OBJECTIVE: This study aimed to evaluate the association of triglyceride-glucose (TyG) index with all-cause and cardiovascular mortality risk among patients with cardiometabolic syndrome (CMS). METHODS: We performed a cohort study of 5754 individuals with CMS from the 2001-2018 National Health and Nutrition Examination Survey. The TyG index was calculated as Ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. Multivariate Cox proportional hazards regression models assessed the associations between TyG index and mortality . Non-linear correlations and threshold effects were explored using restricted cubic splines and a two-piecewise Cox proportional hazards model. RESULTS: Over a median follow-up of 107 months, 1201 all-cause deaths occurred, including 398 cardiovascular disease-related deaths. The multivariate Cox proportional hazards regression model showed a positive association between the TyG index and all-cause and cardiovascular mortality. Each one-unit increase in the TyG index was associated with a 16% risk increase in all-cause mortality (HR: 1.16, 95% CI 1.03, 1.31, P = 0.017) and a 39% risk increase in cardiovascular mortality (HR: 1.39, 95% CI 1.14, 1.71, P = 0.001) after adjusting for confounders. The restricted cubic splines revealed a U-shaped association between the TyG index and all-cause (P for nonlinear < 0.001) and cardiovascular mortality (P for nonlinear = 0.044), identifying threshold values (all-cause mortality: 9.104; cardiovascular mortality: 8.758). A TyG index below these thresholds displayed a negative association with all-cause mortality (HR: 0.58, 95% CI 0.38, 0.90, P = 0.015) but not with cardiovascular mortality (HR: 0.39, 95% CI 0.12, 1.27, P = 0.119). Conversely, a TyG index exceeding these thresholds was positively associated with all-cause and cardiovascular mortality (HR: 1.35, 95% CI 1.17, 1.55, P < 0.001; HR: 1.54, 95% CI 1.25, 1.90, P < 0.001, respectively). Notably, a higher TyG index (≥ threshold values) was significantly associated with increased mortality only among individuals aged under 55 compared to those with a lower TyG index (< threshold values). CONCLUSIONS: The TyG index demonstrated a U-shaped correlation with all-cause and cardiovascular mortality in individuals with CMS. The thresholds of 9.104 and 8.758 for all-cause and cardiovascular mortality, respectively, may be used as intervention targets to reduce the risk of premature death and cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome Metabólico , Humanos , Anciano , Enfermedades Cardiovasculares/diagnóstico , Síndrome Metabólico/diagnóstico , Estudios de Cohortes , Encuestas Nutricionales , Glucosa , Triglicéridos , Glucemia , Biomarcadores , Factores de Riesgo
3.
Cancer Cell Int ; 24(1): 83, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402402

RESUMEN

Apatinib was the first anti-angiogenic agent approved for treatment of metastatic gastric cancer (GC). However, the emergence of resistance was inevitable. Thus investigating new and valuable off-target effect of apatinib directly against cancer cells is of great significance. Here, we identified extra spindle pole bodies-like 1 (ESPL1) was responsible for apatinib resistance in GC cells through CRISPR genome-wide gain-of-function screening. Loss of function studies further showed that ESPL1 inhibition suppressed cell proliferation, migration and promoted apoptosis in vitro, and accordingly ESPL1 knockdown sensitized GC cells to apatinib. In addition, we found ESPL1 interacted with mouse double minute 2 (MDM2), a E3 ubiquitin protein ligase, and the combination of MDM2 siRNA with apatinib synergistically ameliorated the resistance induced by ESPL1 overexpression. In summary, our study indicated that ESPL1 played a critical role in apatinib resistance in GC cells. Inhibition of MDM2 could rescue the sensitivity of GC cells to apatinib and reverse ESPL1-mediated resistance.

4.
Cell Commun Signal ; 22(1): 231, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637880

RESUMEN

BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.


Asunto(s)
MicroARNs , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , MicroARNs/metabolismo
5.
J Chem Inf Model ; 64(8): 3080-3092, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38563433

RESUMEN

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure-activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.


Asunto(s)
Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa , Semivida , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Farmacocinética , Máquina de Vectores de Soporte
6.
BMC Infect Dis ; 24(1): 426, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649799

RESUMEN

BACKGROUND: Severe acute respiratory infection (SARI), a significant global health concern, imposes a substantial disease burden. In China, there is inadequate data concerning the monitoring of respiratory pathogens, particularly bacteria, among patients with SARI. Therefore, this study aims to delineate the demographic, epidemiological, and aetiological characteristics of hospitalised SARI patients in Central China between 2018 and 2020. METHODS: Eligible patients with SARI admitted to the First Affiliated Hospital of Zhengzhou University between 1 January 2018 and 31 December 2020 were included in this retrospective study. Within the first 24 h of admission, respiratory (including sputum, nasal/throat swabs, bronchoalveolar lavage fluid, thoracocentesis fluid, etc.), urine, and peripheral blood specimens were collected for viral and bacterial testing. A multiplex real-time polymerase chain reaction (PCR) diagnostic approach was used to identify human influenza virus, respiratory syncytial virus, parainfluenza virus, adenovirus, human bocavirus, human coronavirus, human metapneumovirus, and rhinovirus. Bacterial cultures of respiratory specimens were performed with a particular focus on pathogenic microorganisms, including S. pneumoniae, S. aureus, K. pneumoniae, P. aeruginosa, Strep A, H. influenzae, A. baumannii, and E. coli. In cases where bacterial culture results were negative, nucleic acid extraction was performed for PCR to assay for the above-mentioned eight bacteria, as well as L. pneumophila and M. pneumoniae. Additionally, urine specimens were exclusively used to detect Legionella antigens. Furthermore, epidemiological, demographic, and clinical data were obtained from electronic medical records. RESULTS: The study encompassed 1266 patients, with a mean age of 54 years, among whom 61.6% (780/1266) were males, 61.4% (778/1266) were farmers, and 88.8% (1124/1266) sought medical treatment in 2020. Moreover, 80.3% (1017/1266) were housed in general wards. The most common respiratory symptoms included fever (86.8%, 1122/1266) and cough (77.8%, 986/1266). Chest imaging anomalies were detected in 62.6% (792/1266) of cases, and 58.1% (736/1266) exhibited at least one respiratory pathogen, with 28.5% (361/1266) having multiple infections. Additionally, 95.7% (1212/1266) of the patients were from Henan Province, with the highest proportion (38.3%, 486/1266) falling in the 61-80 years age bracket, predominantly (79.8%, 1010/1266) seeking medical aid in summer and autumn. Bacterial detection rate (39.0%, 495/1266) was higher than viral detection rate (36.9%, 468/1266), with the primary pathogens being influenza virus (13.8%, 175/1266), K. pneumoniae (10.0%, 127/1266), S. pneumoniae (10.0%, 127/1266), adenovirus (8.2%, 105/1266), P. aeruginosa (8.2%, 105/1266), M. pneumoniae (7.8%, 100/1266), and respiratory syncytial virus (7.7%, 98/1266). During spring and winter, there was a significant prevalence of influenza virus and human coronavirus, contrasting with the dominance of parainfluenza viruses in summer and autumn. Respiratory syncytial virus and rhinovirus exhibited higher prevalence across spring, summer, and winter. P. aeruginosa, K. pneumoniae, and M. pneumoniae were identified at similar rates throughout all seasons without distinct spikes in prevalence. However, S. pneumoniae showed a distinctive pattern with a prevalence that doubled during summer and winter. Moreover, the positive detection rates of various other viruses and bacteria were lower, displaying a comparatively erratic prevalence trend. Among patients admitted to the intensive care unit, the predominant nosocomial bacteria were K. pneumoniae (17.2%, 43/249), A. baumannii (13.6%, 34/249), and P. aeruginosa (12.4%, 31/249). Conversely, in patients from general wards, predominant pathogens included influenza virus (14.8%, 151/1017), S. pneumoniae (10.4%, 106/1017), and adenovirus (9.3%, 95/1017). Additionally, paediatric patients exhibited significantly higher positive detection rates for influenza virus (23.9%, 11/46) and M. pneumoniae (32.6%, 15/46) compared to adults and the elderly. Furthermore, adenovirus (10.0%, 67/669) and rhinovirus (6.4%, 43/669) were the primary pathogens in adults, while K. pneumoniae (11.8%, 65/551) and A. baumannii (7.1%, 39/551) prevailed among the elderly, indicating significant differences among the three age groups. DISCUSSION: In Central China, among patients with SARI, the prevailing viruses included influenza virus, adenovirus, and respiratory syncytial virus. Among bacteria, K. pneumoniae, S. pneumoniae, P. aeruginosa, and M. pneumoniae were frequently identified, with multiple infections being very common. Additionally, there were substantial variations in the pathogen spectrum compositions concerning wards and age groups among patients. Consequently, this study holds promise in offering insights to the government for developing strategies aimed at preventing and managing respiratory infectious diseases effectively.


Asunto(s)
Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , Estudios Retrospectivos , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/microbiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Adolescente , Adulto Joven , Niño , Preescolar , Enfermedad Aguda , Lactante , Anciano de 80 o más Años , Virus/aislamiento & purificación , Virus/clasificación , Virus/genética , Hospitalización/estadística & datos numéricos
7.
Exp Cell Res ; 427(2): 113605, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080417

RESUMEN

As a member of Ubiquitin-specific protease subfamily, ubiquitin specific protease 7 (USP7) has been reported to participate in a variety of cellular processes, including cell cycle, apoptosis, DNA damage response, and epigenetic modification. However, its function in preimplantation embryos is still obscure. To investigate the functions of USP7 during preimplantation embryo development, we used siRNA to degrade endogenous USP7 messenger RNA. We found that USP7 knockdown significantly decreased the development rate of mouse early embryos. Moreover, depletion of USP7 induced the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, USP7 knockdown caused an abnormal H3K27me3 modification in 2-cell embryos. Overall, our results indicate that USP7 maintains genome stability perhaps via regulating H3K27me3 and DNA damage, consequently controlling the embryo quality.


Asunto(s)
Histonas , Ubiquitina Tiolesterasa , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Histonas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Daño del ADN/genética , Proteasas Ubiquitina-Específicas/genética
8.
Exp Cell Res ; 433(1): 113804, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806378

RESUMEN

Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.

9.
BMC Public Health ; 24(1): 295, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273270

RESUMEN

BACKGROUND: The possibility of adverse effects of medical treatment (AEMT) is increasing worldwide, but little is known about AEMT in China. This study analyzed the health burden of AEMT in China in recent years through the Global Burden of Disease Study (GBD) 2019 and compared it with the worldwide average level and those in different sociodemographic index (SDI) regions. METHODS: We calculated the age-standardized rate (ASR) of deaths, disability-adjusted life years (DALYs), years of life lost (YLLs), years lived with disability (YLDs), incidence and prevalence attributed to AEMT in China, worldwide and countries with different sociodemographic indices during 1990-2019 using the latest data and methods from the GBD 2019. RESULTS: From 1990 to 2019, the global age-standardized death rate (ASDR), DALYs, and YLLs for AEMT showed a significant downward trend and were negatively associated with the SDI. By 2040, the ASDR is expected to reach approximately 1.58 (95% UI: 1.33-1.80). From 1990 to 2019, there was no significant change in the global incidence of AEMT. The occurrence of AEMT was related to sex, and the incidence of AEMT was greater among females. In addition, the incidence of AEMT-related injuries and burdens, such as ASR of DALYs, ASR of YLLs and ASR of YLDs, was greater among women than among men. Very old and very young people were more likely to be exposed to AEMT. CONCLUSIONS: From 1990 to 2019, progress was made worldwide in reducing the harm caused by AEMT. However, the incidence and prevalence of AEMT did not change significantly overall during this period. Therefore, the health sector should pay more attention to AEMT and take effective measures to reduce AEMT.


Asunto(s)
Personas con Discapacidad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Muerte Perinatal , Masculino , Humanos , Femenino , Adolescente , Carga Global de Enfermedades , Incidencia , Prevalencia , Salud Global , Años de Vida Ajustados por Calidad de Vida
10.
BMC Public Health ; 24(1): 1090, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641579

RESUMEN

BACKGROUND: Cardiovascular health (CVH) and abdominal aortic calcification (AAC) are closely linked to cardiovascular disease (CVD) and related mortality. However, the relationship between CVH metrics via Life's Essential 8 (LE8) and AAC remains unexplored. METHODS: The study analyzed data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) cohort, which included adults aged 40 or above. The research used the LE8 algorithm to evaluate CVH. Semi-quantitative AAC-24 scoring techniques were employed to assess AAC, categorized into no calcification, mild to moderate calcification, and severe calcification. RESULTS: The primary analysis involved 2,478 participants. Following adjustments for multiple factors, the LE8 score exhibited a significant association with ACC risk (Mild-moderate ACC: 0.87, 95% CI: 0.81,0.93; Severe ACC: 0.77, 95% CI: 0.69,0.87, all P < 0.001), indicating an almost linear dose-response relationship. Compared to the low CVH group, the moderate CVH group showed lower odds ratios (OR) for mild-moderate and severe calcification (OR = 0.78, 95% CI: 0.61-0.99, P = 0.041; OR = 0.68, 95% CI: 0.46-0.99, P = 0.047, respectively). Moreover, the high CVH group demonstrated even lower ORs for mild-moderate and severe calcification (OR = 0.46, 95% CI: 0.31, 0.69, P < 0.001; OR = 0.29, 95% CI: 0.14, 0.59, P = 0.001, respectively). Interactions were found between chronic kidney disease (CKD) condition, history of CVD, marital status and CVH metrics to ACC. Participants without CKD exhibited a more pronounced negative association between the CVH metric and both mild-moderate and severe ACC. Those lacking a history of CVD, and never married/widowed/divorced/separated showed a stronger negative association between the CVH metric and severe ACC. CONCLUSIONS: The novel CVH metrics demonstrated an inverse correlation with the risk of AAC. These findings suggest that embracing improved CVH levels may assist in alleviating the burden of ACC.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Adulto , Humanos , Estados Unidos/epidemiología , Estudios Transversales , Encuestas Nutricionales , Proyectos de Investigación , Factores de Riesgo
11.
J Obstet Gynaecol ; 44(1): 2303693, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38263614

RESUMEN

BACKGROUND: As women with low ovarian reserve embark on the challenging journey of in-vitro fertilisation (IVF) treatment, the choice between natural and mildly stimulated cycles becomes a pivotal consideration. It is unclear which of these two regimens is superior for women with low ovarian reserve. Our study aims to assess the impact of natural cycles on embryo quality and pregnancy outcomes in women with low ovarian reserve undergoing IVF treatment compared to mildly stimulated cycles. METHODS: This retrospective study enrolled consecutive patients with low ovarian reserve who underwent IVF/intracytoplasmic sperm injection (ICSI) at Guangdong Second Provincial General Hospital between January 2017 and April 2021. The primary outcome for pregnancy rate of 478 natural cycles and 448 mild stimulated cycles was compared. Secondary outcomes included embryo quality and oocyte retrieval time of natural cycles. RESULTS: The pregnancy rate in the natural cycle group was significantly higher than that in the mildly stimulated cycle group (51.8% vs. 40.1%, p = 0.046). Moreover, natural cycles exhibited higher rates of available embryos (84.1% vs. 78.6%, p = 0.040), high-quality embryos (61.8% vs. 53.2%, p = 0.008), and utilisation of oocytes (73% vs. 65%, p = 0.001) compared to mildly stimulated cycles. Oocyte retrievals in natural cycles were predominantly performed between 7:00 and 19:00, with 94.9% occurring during this time frame. In natural cycles with high-quality embryos, 96.4% of oocyte retrievals were also conducted between 7:00 and 19:00. CONCLUSION: Natural cycles with appropriately timed oocyte retrieval may present a valuable option for patients with low ovarian reserve.


In the realm of in-vitro fertilisation (IVF) treatment, women with low ovarian reserve often face the crucial decision of opting for natural or mildly stimulated cycles. This retrospective study, conducted between January 2017 and April 2021 at Guangdong Second Provincial General Hospital, delves into the impact of these cycles on pregnancy outcomes. Examining 478 natural cycles and 448 mildly stimulated cycles, the study reveals a notably higher pregnancy rate in the natural cycle group (51.8% vs. 40.1%). Additionally, natural cycles demonstrated higher rates of available embryos, high-quality embryos, and oocyte utilisation compared to their mildly stimulated counterparts. The findings suggest that natural cycles, with proper oocyte retrieval timing, could be a favourable choice for those with low ovarian reserve seeking IVF treatment.


Asunto(s)
Reserva Ovárica , Resultado del Embarazo , Femenino , Humanos , Masculino , Embarazo , Estudios de Cohortes , Estudios Retrospectivos , Semen , Recuperación del Oocito , Índice de Embarazo
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 574-579, 2024 May 20.
Artículo en Zh | MEDLINE | ID: mdl-38948297

RESUMEN

Objective: To investigate the effects of intrauterine perfusion with granulocyte colony-stimulating factor (G-CSF) on the endometrial thickness, volume, and blood flow parameters of patients with thin endometrium and their clinical outcomes. Methods: We designed a prospective non-randomized synchronous controlled trial and recruited patients with thin endometrium who underwent frozen-thawed embryo transfer (FET) at Mianyang Central Hospital between September 1, 2021 and September 1, 2023. They were divided into two groups, an experimental group of patients who received the experimental treatment of intrauterine perfusion with G-CSF and a control group of patients who did not receive the experimental treatment. The general data and the clinical outcomes of the two groups were analyzed and compared. The endometrial thickness, volume and blood flow parameters of patients in the experimental group before and after intrauterine perfusion with G-CSF were analyzed. Results: The clinical data of 83 patients were included in the study. The experimental group included 51 cases, while the control group included 31 cases. There were no significant differences in the baseline data between the two groups. The clinical pregnancy rate of the experimental group (56.86%) was higher than that of the control group (50.00%) and the rate of spontaneous abortion in the experimental group (27.59%) was lower than that in the control group (37.50%), but the differences were not statistically significant (P>0.05). In the experimental group, the postperfusion endometrial thickness ([0.67±0.1] cm) was greater than the preperfusion endometrial thickness ([0.59±0.09] cm), the postperfusion ([1.84±0.81] cm3) was greater than the preperfusion endometrial volume ([1.54±0.69] cm3), and the postperfusion vascularization flow index (VFI) (1.97±2.82) was greater than the preperfusion VFI (0.99±1.04), with all the differences being statistically significant (P<0.05). Conclusion: Intrauterine perfusion with G-CSF can enhance the endometrial thickness, volume, and some blood flow parameters in patients with thin endometrium.


Asunto(s)
Transferencia de Embrión , Endometrio , Factor Estimulante de Colonias de Granulocitos , Índice de Embarazo , Humanos , Femenino , Endometrio/irrigación sanguínea , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/farmacología , Estudios Prospectivos , Embarazo , Transferencia de Embrión/métodos , Adulto , Perfusión
13.
Nat Prod Rep ; 40(5): 988-1021, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36205211

RESUMEN

Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.


Asunto(s)
Productos Biológicos , Hidrocarburos Fluorados/química , Metilación , Catálisis
14.
BMC Med ; 21(1): 329, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635214

RESUMEN

BACKGROUND: Patients with acute pancreatitis (AP) exhibit specific phenotypes of gut microbiota associated with severity. Gut microbiota and host interact primarily through metabolites; regrettably, little is known about their roles in AP biological networks. This study examines how enterobacterial metabolites modulate the innate immune system in AP aggravation. METHODS: In AP, alterations in gut microbiota were detected via microbiomics, and the Lactobacillus metabolites of tryptophan were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By culturing Lactobacillus with tryptophan, differential metabolites were detected by LC-MS/MS. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells and mice with cerulein plus LPS-induced AP were used to evaluate the biological effect of norharman on M1 macrophages activation in AP development. Further, RNA sequencing and lipid metabolomics were used for screening the therapeutic targets and pathways of norharman. Confocal microscopy assay was used to detect the structure of lipid rafts. Molecular docking was applied to predict the interaction between norharman and HDACs. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to explore the direct mechanism of norharman promoting Rftn1 expression. In addition, myeloid-specific Rftn1 knockout mice were used to verify the role of Rftn1 and the reversed effect of norharman. RESULTS: AP induced the dysfunction of gut microbiota and their metabolites, resulting in the suppression of Lactobacillus-mediated tryptophan metabolism pathway. The Lactobacillus metabolites of tryptophan, norharman, inhibited the release of inflammatory factor in vitro and in vivo, as a result of its optimal inhibitory action on M1 macrophages. Moreover, norharman blocked multiple inflammatory responses in AP exacerbation due to its ability to maintain the integrity of lipid rafts and restore the dysfunction of lipid metabolism. The mechanism of norharman's activity involved inhibiting the enzyme activity of histone deacetylase (HDACs) to increase histone H3 at lysine 9/14 (H3K9/14) acetylation, which increased the transcription level of Rftn1 (Raftlin 1) to inhibit M1 macrophages' activation. CONCLUSIONS: The enterobacterial metabolite norharman can decrease HDACs activity to increase H3K9/14 acetylation of Rftn1, which inhibits M1 macrophage activation and restores the balance of lipid metabolism to relieve multiple inflammatory responses. Therefore, norharman may be a promising prodrug to block AP aggravation.


Asunto(s)
Lactobacillus , Pancreatitis , Animales , Ratones , Histona Desacetilasas , Triptófano , Enfermedad Aguda , Cromatografía Liquida , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Enterobacteriaceae
15.
Small ; 19(44): e2302197, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37403302

RESUMEN

Synaptic devices that mimic biological synapses are considered as promising candidates for brain-inspired devices, offering the functionalities in neuromorphic computing. However, modulation of emerging optoelectronic synaptic devices has rarely been reported. Herein, a semiconductive ternary hybrid heterostructure is prepared with a D-D'-A configuration by introducing polyoxometalate (POM) as an additional electroactive donor (D') into a metalloviologen-based D-A framework. The obtained material features an unprecedented porous 8-connected bcu-net that accommodates nanoscale [α-SiW12 O40 ]4- counterions, displaying uncommon optoelectronic responses. Besides, the fabricated synaptic device based on this material can achieve dual-modulation of synaptic plasticity due to the synergetic effect of electron reservoir POM and photoinduced electron transfer. And it can successfully simulate learning and memory processes similar to those in biological systems. The result provides a facile and effective strategy to customize multi-modality artificial synapses in the field of crystal engineering, which opens a new direction for developing high-performance neuromorphic devices.

16.
Mol Hum Reprod ; 29(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37068378

RESUMEN

Strategies to maximize individual fertility chances are constant requirements of ART. In vitro folliculogenesis may represent a valid option to create a large source of immature ovarian follicles in ART. Efforts are being made to set up mammalian follicle culture protocols with suitable FSH stimuli. In this study, a new type of recombinant FSH (KN015) with a prolonged half-life is proposed as an alternative to canonical FSH. KN015 supports the in vitro development of mouse follicles from primary to preovulatory stage with higher efficiency than canonical FSH and enhanced post-fertilization development rates of the ovulated oocytes. The use of KN015 also allows us to compare the dynamic transcriptome changes in oocytes and granulosa cells at different stages, in vivo and in vitro. In particular, KN015 facilitates mRNA accumulation in growing mouse oocytes and prevents spontaneous luteinization of granulosa cells in vitro. Novel analyses of transcriptome changes in this study reveal that the in vivo oocytes were more efficient than in vitro oocytes in terms of maternal mRNA clearing during meiotic maturation. KN015 promotes the degradation of maternal mRNA during in vitro oocyte maturation, improves cytoplasmic maturation and, therefore, enhances embryonic developmental potential. These findings establish new transcriptome data for oocyte and granulosa cells at the key stages of follicle development, and should help to widen the use of KN015 as a valid and commercially available hormonal support enabling optimized in vitro development of follicles and oocytes.


Asunto(s)
ARN Mensajero Almacenado , Transcriptoma , Femenino , Ratones , Animales , ARN Mensajero Almacenado/metabolismo , Oogénesis/genética , Oocitos/metabolismo , Células de la Granulosa , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Meiosis , Mamíferos
17.
Opt Lett ; 48(4): 920-923, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790975

RESUMEN

Optical beams with a pure longitudinally polarized field are of great interest for their unique properties and promising applications in various fields such as optical trapping and three-dimensional microscopy. Here, an all-dielectric metasurface is proposed to directly generate Bessel beams with tunable longitudinally polarized electric and magnetic fields under a simple incidence of linear polarization. Under the incidence of horizontal polarization, a Bessel beam with a pure longitudinally polarized electric field can be generated, which can be turned to a beam with a pure longitudinally polarized magnetic field when the incidence is switched to vertical polarization. More importantly, it is further demonstrated that the longitudinal components of the electric and magnetic fields can be accurately manipulated between zero and the maximum by simply changing the polarization angle of incident light. The simplicity and flexibility of this proposed metasurface may provide new possibilities in ultracompact photonic devices for optical trapping, optical storage, and related fields.

18.
FASEB J ; 36(3): e22165, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35174565

RESUMEN

Acetylcholine (ACh) is found not only in cholinergic nerve termini but also in the nonneuronal cholinergic system (NNCS). ACh is released from cholinergic nerves by vesicular ACh transporter (VAChT), but ACh release from the NNCS is mediated by organic cation transporter (OCT). Recent studies have suggested that components of the NNCS are located in intestinal epithelial cells (IECs), crypt-villus organoids, immune cells, intestinal stem cells (ISCs), and vascular endothelial cells (VECs). When ACh enters the interstitial space, its self-modulation or effects on adjacent tissues are part of the range of its biological functions. This review focuses on the current understanding of the mechanisms of ACh synthesis and release in the NNCS. Furthermore, studies on ACh functions in colonic disorders suggest that ACh from the NNCS contributes to immune regulation, IEC and VEC repair, ISC differentiation, colonic movement, and colonic tumor development. As indicated by the features of some colonic disorders, ACh and the NNCS have positive and negative effects on these disorders. Furthermore, the NNCS is located in multiple colonic organs, and the specific effects and cross-talk involving ACh from the NNCS in different colonic tissues are explored.


Asunto(s)
Colina/metabolismo , Enfermedades del Colon/metabolismo , Mucosa Intestinal/metabolismo , Animales , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
19.
Chemphyschem ; 24(13): e202300207, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37089002

RESUMEN

The organic salt chlorocholine perchlorate [ClCH2 CH2 N(CH3 )3 ⋅ClO4 ] (CCP) is found to be a molecular ferroelectric with a high theoretical spontaneous polarization (Ps) value up to 17.09 µC cm-2 . CCP exhibits two successive order-disorder phase transition at 332 and 365 K with space groups changing from Cc to Cmc21 and then P63 /mmc, accompanied by unusual two-step ladder-like dielectric, SHG signal with obvious "on/off" contrasts. These findingings provides a further instance of exploring successive thermal-stimuli multi-responsive switching materials applied as switches and sensors.

20.
Pulm Pharmacol Ther ; 81: 102228, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295666

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease of unknown etiology. Its pathological manifestations include excessive proliferation and activation of fibroblasts and deposition of extracellular matrix. Endothelial cell-mesenchymal transformation (EndMT), a novel mechanism that generates fibroblast during IPF, is responsible for fibroblast-like phenotypic changes and activation of fibroblasts into hypersecretory cells. However, the exact mechanism behind EndMT-derived fibroblasts and activation is uncertain. Here, we investigated the role of sphingosine 1-phosphate receptor 1 (S1PR1) in EndMT-driven pulmonary fibrosis. METHODS: We treated C57BL/6 mice with bleomycin (BLM) in vivo and pulmonary microvascular endothelial cells with TGF-ß1 in vitro. Western blot, flow cytometry, and immunofluorescence were used to detect the expression of S1PR1 in endothelial cells. To evaluate the effect of S1PR1 on EndMT and endothelial barrier and its role in lung fibrosis and related signaling pathways, S1PR1 agonist and antagonist were used in vitro and in vivo. RESULTS: Endothelial S1PR1 protein expression was downregulated in both in vitro and in vivo models of pulmonary fibrosis induced by TGF-ß1 and BLM, respectively. Downregulation of S1PR1 resulted in EndMT, indicated by decreased expression of endothelial markers CD31 and VE-cadherin, increased expression of mesenchymal markers α-SMA and nuclear transcription factor Snail, and disruption of the endothelial barrier. Further mechanistic studies found that stimulation of S1PR1 inhibited TGF-ß1-mediated activation of the Smad2/3 and RhoA/ROCK1 pathways. Moreover, stimulation of S1PR1 attenuated Smad2/3 and RhoA/ROCK1 pathway-mediated damage to endothelial barrier function. CONCLUSIONS: Endothelial S1PR1 provides protection against pulmonary fibrosis by inhibiting EndMT and attenuating endothelial barrier damage. Accordingly, S1PR1 may be a potential therapeutic target in progressive IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta1/metabolismo , Células Endoteliales/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/uso terapéutico , Ratones Endogámicos C57BL , Bleomicina/farmacología , Transición Epitelial-Mesenquimal , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA