Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(3): 288-302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36280495

RESUMEN

Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.


Asunto(s)
Aminoacil-ARNt Sintetasas , Miositis , Humanos , Aminoacil-ARNt Sintetasas/genética , ARN de Transferencia/genética , Autoanticuerpos
2.
Gastroenterology ; 167(2): 343-356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342194

RESUMEN

BACKGROUND & AIMS: Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS: apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS: We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS: These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.


Asunto(s)
Apoptosis , Hepatocitos , Homeostasis , Regeneración Hepática , Hígado , Ratones Noqueados , Animales , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Caspasa 3/metabolismo , Ratones , Hepatectomía , Modelos Animales de Enfermedad , Receptor fas/metabolismo , Receptor fas/genética , Aparato de Golgi/metabolismo , Endocitosis , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Ratones Endogámicos C57BL , Acetaminofén , Masculino
3.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739431

RESUMEN

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Asunto(s)
Biosíntesis de Proteínas , Serina-ARNt Ligasa , Humanos , Codón sin Sentido , Codón de Terminación , ARN Mensajero/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-ARNt Ligasa/genética
4.
Nucleic Acids Res ; 51(18): 10001-10010, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638745

RESUMEN

Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.


Asunto(s)
Serina-ARNt Ligasa , Animales , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(48): e2212659119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409883

RESUMEN

Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.


Asunto(s)
Ataxias Espinocerebelosas , Trombocitopenia , Trombosis , Tirosina-ARNt Ligasa , Virosis , Ratones , Animales , Trombopoyesis , Ratones Transgénicos
6.
J Cell Mol Med ; 28(13): e18530, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961673

RESUMEN

Tumour morphology (tumour burden score (TBS)) and liver function (albumin-to-alkaline phosphatase ratio (AAPR)) have been shown to correlate with outcomes in intrahepatic cholangiocarcinoma (ICC). This study aimed to evaluate the combined predictive effect of TBS and AAPR on survival outcomes in ICC patients. We conducted a retrospective analysis using a multicentre database of ICC patients who underwent curative surgery from 2011 to 2018. The Kaplan-Meier method was employed to examine the relationship between a new index (combining TBS and AAPR) and long-term outcomes. The predictive efficacy of this index was compared to other conventional indicators. A total of 560 patients were included in the study. Based on TBS and AAPR stratification, patients were classified into three groups. Kaplan-Meier curves demonstrated that 124 patients with low TBS and high AAPR had the best overall survival (OS) and recurrence-free survival (RFS), while 170 patients with high TBS and low AAPR had the worst outcomes (log-rank p < 0.001). Multivariate analyses identified the combined index as an independent predictor of OS and RFS. Furthermore, the index showed superior accuracy in predicting OS and RFS compared to other conventional indicators. Collectively, this study demonstrated that the combination of liver function and tumour morphology provides a synergistic effect in evaluating the prognosis of ICC patients. The novel index combining TBS and AAPR effectively stratified postoperative survival outcomes in ICC patients undergoing curative resection.


Asunto(s)
Fosfatasa Alcalina , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Carga Tumoral , Humanos , Colangiocarcinoma/patología , Colangiocarcinoma/cirugía , Colangiocarcinoma/sangre , Colangiocarcinoma/mortalidad , Femenino , Masculino , Fosfatasa Alcalina/sangre , Persona de Mediana Edad , Pronóstico , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/sangre , Anciano , Estudios Retrospectivos , Estimación de Kaplan-Meier , Biomarcadores de Tumor/sangre
7.
J Am Chem Soc ; 146(13): 9356-9364, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502531

RESUMEN

Pharmaceuticals and biologically active natural products usually contain multiple stereocenters. The development of catalytic asymmetric reactions for the direct construction of complex motifs containing three nonadjacent stereocenters is a particularly important and formidable challenge. In this paper, we report an unprecedented method for the direct asymmetric construction of complex chiral amines with 1,3,5- or 1,3,4-stereocenters from readily available achiral and racemic starting materials. The reaction was made possible by the development of highly efficient chiral ammonium catalysts that serve three distinct functions: promoting efficient kinetic resolution by chiral recognition of racemic electrophiles, promoting asymmetric C-C bond forming reactions by recognizing enantiotropic faces of achiral nucleophiles, and mediating a highly stereoselective protonation of carbanions. Using these trifunctional catalysts, the reaction of imines and tulipane derivatives proceeded in a highly regio-, chemo-, and stereoselective manner to produce synthetically useful yields of complex chiral amines. We believe that trifunctional catalysis can be applied in a variety of asymmetric transformations for the streamlined asymmetric synthesis of complex chiral molecules with multiple stereocenters.

8.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583640

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Asunto(s)
Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Humanos , Ratones Transgénicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutación
9.
Nature ; 564(7736): E37, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30459470

RESUMEN

In Fig. 1b of this Article, a U was inadvertently inserted after G15 in the D loop. The original Article has not been corrected.

10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753480

RESUMEN

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/genética , Aminoacilación/genética , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/sangre , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Linfocitos , Mutación , Neuropilina-1/genética , Cultivo Primario de Células , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño
11.
Ecotoxicol Environ Saf ; 282: 116725, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002377

RESUMEN

The cell wall serves as the primary barrier against the entry of heavy metal ions into cells. However, excessive accumulation of heavy metals within plants can lead to alterations in the spatial structure and physical properties of the cell wall, thereby affecting the capacity of plants to capture heavy metals. Proline (Pro) is involved in the synthesis of the cell wall, modulating the stability and integrity of its structure. Extensins, core proteins that maintain the cell wall structure, are proline/hydroxyproline-rich glycoproteins that contain the characteristic sequence Ser-[Pro]3-5. They act as intermediates in the regulation of biological processes such as cell wall synthesis, assembly, and signal transduction, typically forming a network structure of cell wall proteins through cross-linking with pectin. This network is essential for the self-assembly expansion of the plant cell wall and plays an indispensable role in cell wall stress signal transduction through its interaction with intracellular signalling molecules. However, the mechanisms by which Pro affects the synthesis of cell wall structural proteins, cell wall assembly, and the sensing of cell wall stress under heavy metal stress remain unclear. This review, from the perspectives of biochemistry and molecular biology, comprehensively elaborates on the impact of Pro and Pro-rich proteins on the structure and function of the cell wall. These findings emphasize the mechanism by which Pro enhances the ability of the cell wall to capture heavy metals, providing new research ideas for the use of genetic engineering to manipulate cell wall synthesis and repair, thereby reducing the phytotoxicity of heavy metals.

12.
Int Wound J ; 21(4): e14795, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572781

RESUMEN

This study investigates the effects of comprehensive nursing interventions on wound pain in patients undergoing catheter insertion for peritoneal dialysis. Sixty patients who underwent catheter insertion for peritoneal dialysis from January 2021 to January 2023 at our hospital were selected as subjects and randomly divided into an experimental group and a control group using a random number table method. The control group received routine nursing care, while the experimental group was subjected to comprehensive nursing interventions. The study compared the impact of nursing measures on visual analogue scale (VAS), self-rating anxiety scale (SAS), self-rating depression scale (SDS) and nursing satisfaction between the two groups. The analysis revealed that on the third, fifth and seventh days post-intervention, the experimental group's wound VAS scores were significantly lower than those of the control group (p < 0.001). Furthermore, levels of anxiety and depression were markedly lower in the experimental group compared with the control group (p < 0.001). In addition, the nursing satisfaction rate was significantly higher in the experimental group than in the control group (96.67% vs. 73.33%, p = 0.011). This study indicates that the application of comprehensive nursing interventions in patients undergoing catheter insertion for peritoneal dialysis is highly effective. It can alleviate wound pain and negative emotions to a certain extent, while also achieving high patient satisfaction, thus demonstrating significant clinical value.


Asunto(s)
Dolor , Diálisis Peritoneal , Humanos , Ansiedad/etiología , Ansiedad/terapia , Trastornos de Ansiedad , Catéteres
13.
J Am Chem Soc ; 145(8): 4400-4407, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800284

RESUMEN

Catalytic asymmetric cross-coupling of imines constitutes a particularly desirable method for the synthesis of chiral vicinal diamines directly from readily available achiral precursors. The potential of this method lies in the possibility of utilizing a variety of imines as reacting partners. However, the realization of highly stereoselective cross-coupling of two different imines proved to be a formidable challenge. Herein we report an unprecedented catalytic asymmetric cross-coupling reaction that tolerates a variety of ketimines and aldimines as nucleophiles and electrophiles, respectively. The realization of this reaction resulted from the development of a new chiral ammonium catalyst, which was guided by insights from studies of catalyst-substrate interactions. With a 0.5 mol % loading of an organocatalyst, this reaction proceeded in a highly diastereo- and enantioselective manner to afford a diverse range of chiral vicinal diamines as nearly single stereoisomers. This catalytic reaction establishes a new approach for the asymmetric synthesis of chiral vicinal diamines.

14.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880726

RESUMEN

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Factores de Transcripción NFI , Canales Catiónicos TRPV , Animales , Humanos , Ratones , 4-Aminopiridina/efectos adversos , Astrocitos/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba
15.
Gastrointest Endosc ; 97(4): 664-672.e4, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36509114

RESUMEN

BACKGROUND AND AIMS: Although narrow-band imaging (NBI) is a useful modality for detecting and delineating esophageal squamous cell carcinoma (ESCC), there is a risk of incorrectly determining the margins of some lesions even with NBI. This study aimed to develop an artificial intelligence (AI) system for detecting superficial ESCC and precancerous lesions and delineating the extent of lesions under NBI. METHODS: Nonmagnified NBI images from 4 hospitals were collected and annotated. Internal and external image test datasets were used to evaluate the detection and delineation performance of the system. The delineation performance of the system was compared with that of endoscopists. Furthermore, the system was directly integrated into the endoscopy equipment, and its real-time diagnostic capability was prospectively estimated. RESULTS: The system was trained and tested using 10,047 still images and 140 videos from 1112 patients and 1183 lesions. In the image testing, the accuracy of the system in detecting lesions in internal and external tests was 92.4% and 89.9%, respectively. The accuracy of the system in delineating extents in internal and external tests was 88.9% and 87.0%, respectively. The delineation performance of the system was superior to that of junior endoscopists and similar to that of senior endoscopists. In the prospective clinical evaluation, the system exhibited satisfactory performance, with an accuracy of 91.4% in detecting lesions and an accuracy of 85.9% in delineating extents. CONCLUSIONS: The proposed AI system could accurately detect superficial ESCC and precancerous lesions and delineate the extent of lesions under NBI.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Lesiones Precancerosas , Humanos , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas/patología , Estudios Prospectivos , Inteligencia Artificial , Lesiones Precancerosas/diagnóstico por imagen , Imagen de Banda Estrecha , Endoscopía Gastrointestinal
16.
PLoS Biol ; 18(12): e3000991, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351793

RESUMEN

Hypoxia-induced angiogenesis maintains tissue oxygen supply and protects against ischemia but also enhances tumor progression and malignancy. This is mediated through activation of transcription factors like hypoxia-inducible factor 1 (HIF-1) and c-Myc, yet the impact of hypoxia on negative regulators of angiogenesis is unknown. During vascular development, seryl-tRNA synthetase (SerRS) regulates angiogenesis through a novel mechanism by counteracting c-Myc and transcriptionally repressing vascular endothelial growth factor A (VEGFA) expression. Here, we reveal that the transcriptional repressor role of SerRS is inactivated under hypoxia through phosphorylation by ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and RAD3-related (ATR) at Ser101 and Ser241 to attenuate its DNA binding capacity. In zebrafish, SerRSS101D/S241D, a phosphorylation-mimicry mutant, cannot suppress VEGFA expression to support normal vascular development. Moreover, expression of SerRSS101A/S241A, a phosphorylation-deficient and constitutively active mutant, prevents hypoxia-induced binding of c-Myc and HIF-1 to the VEGFA promoter, and activation of VEGFA expression. Consistently, SerRSS101A/S241A strongly inhibits normal and tumor-derived angiogenesis in mice. Therefore, we reveal a key step regulating hypoxic angiogenesis and highlight the importance of nuclear SerRS in post-developmental angiogenesis regulation in addition to vascular development. The role of nuclear SerRS in inhibiting both c-Myc and HIF-1 may provide therapeutic opportunities to correct dysregulation of angiogenesis in pathological settings.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neovascularización Patológica/genética , Serina-ARNt Ligasa/metabolismo , Inductores de la Angiogénesis , Animales , Animales Modificados Genéticamente , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Línea Celular , Femenino , Células HEK293 , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Desnudos , Fosforilación , Serina-ARNt Ligasa/fisiología , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
17.
Nanotechnology ; 35(7)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976546

RESUMEN

In this study, we conducted molecular dynamic simulations to investigate the thermal expansion behavior of Janus MoSSe nanotubes. We focused on understanding how the intrinsic strain in these nanotubes affects their thermal expansion coefficient (TEC). Interestingly, we found that Janus MoSSe nanotubes with sulfur (S) on the outer surface (MoSeS) exhibit a different intrinsic strain compared to those with selenium (Se) on the outer surface (MoSSe). In light of this observation, we explored the influence of this intrinsic strain on the TEC of the nanotubes. Our results revealed distinct trends for the TEC along the radial direction (TEC-r) and the axial direction (TEC-lx) of the MoSSe and MoSeS nanotubes. The TEC-rof MoSeS nanotubes was found to be significantly greater than that of MoSSe nanotubes. Moreover, the TEC-lxof MoSeS nanotubes was smaller than that of MoSSe nanotubes. Further analysis showed that the TEC-rof MoSeS nanotubes decreased by up to 37% as the radius increased, while that of MoSSe nanotubes exhibited a slight increase with increasing radius. On the other hand, the TEC-lxof MoSeS nanotubes increased by as much as 45% with increasing radius, whereas that of MoSSe nanotubes decreased gradually. These opposite tendencies of the TECs with respect to the radius were attributed to the presence of intrinsic strain within the nanotubes. The intrinsic strain was found to play a crucial role in inducing thermally induced bending and elliptization of the nanotubes' cross-section. These effects are considered key mechanisms through which intrinsic strain influences the TEC. Overall, our study provides valuable insights into the thermal stability of Janus nanotubes. By understanding the relationship between intrinsic strain and the thermal expansion behavior of nanotubes, we contribute to the broader understanding of these materials and their potential applications.

18.
Environ Sci Technol ; 57(46): 18317-18328, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37186812

RESUMEN

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Suelo/química , Carbono , Teorema de Bayes , Fluorocarburos/análisis , Aprendizaje Automático , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37824517

RESUMEN

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Asunto(s)
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrógeno/análisis , Antibacterianos , Bacterias/genética , Plantas , Suelo , Microbiología del Suelo
20.
Acta Pharmacol Sin ; 44(4): 877-887, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36207403

RESUMEN

Neuroblastoma is the most common and deadliest tumor in infancy. WDR5 (WD Repeat Domain 5), a critical factor supporting an N-myc transcriptional complex via its WBM site and interacting with chromosome via its WIN site, promotes the progression of neuroblastoma, thus making it a potential anti-neuroblastoma drug target. So far, a few WIN site inhibitors have been reported, and the WBM site disruptors are rare to see. In this study we conducted virtual screening to identify candidate hit compounds targeting the WBM site of WDR5. As a result, 60 compounds were selected as candidate WBM site inhibitors. Cell proliferation assay demonstrated 6 structurally distinct WBM site inhibitors, numbering as compounds 4, 7, 11, 13, 19 and 22, which potently suppressed 3 neuroblastoma cell lines (MYCN-amplified IMR32 and LAN5 cell lines, and MYCN-unamplified SK-N-AS cell line). Among them, compound 19 suppressed the proliferation of IMR32 and LAN5 cells with EC50 values of 12.34 and 14.89 µM, respectively, and exerted a moderate inhibition on SK-N-AS cells, without affecting HEK293T cells at 20 µM. Analysis of high-resolution crystal complex structure of compound 19 against WDR5 revealed that it competitively occupied the hydrophobic pocket where V264 was located, which might disrupt the interaction of MYC with WDR5 and further MYC-medicated gene transcription. By performing RNA-seq analysis we demonstrated the differences in molecular action mechanisms of the compound 19 and a WIN site inhibitor OICR-9429. Most interestingly, we established the particularly high synergy rate by combining WBM site inhibitor 19 and the WIN site inhibitor OICR-9429, providing a novel therapeutic avenue for neuroblastoma.


Asunto(s)
Dihidropiridinas , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Células HEK293 , Compuestos de Bifenilo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Línea Celular Tumoral , Péptidos y Proteínas de Señalización Intracelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA