Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 717
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8018): 926-934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898273

RESUMEN

Krause corpuscles, which were discovered in the 1850s, are specialized sensory structures found within the genitalia and other mucocutaneous tissues1-4. The physiological properties and functions of Krause corpuscles have remained unclear since their discovery. Here we report the anatomical and physiological properties of Krause corpuscles of the mouse clitoris and penis and their roles in sexual behaviour. We observed a high density of Krause corpuscles in the clitoris compared with the penis. Using mouse genetic tools, we identified two distinct somatosensory neuron subtypes that innervate Krause corpuscles of both the clitoris and penis and project to a unique sensory terminal region of the spinal cord. In vivo electrophysiology and calcium imaging experiments showed that both Krause corpuscle afferent types are A-fibre rapid-adapting low-threshold mechanoreceptors, optimally tuned to dynamic, light-touch and mechanical vibrations (40-80 Hz) applied to the clitoris or penis. Functionally, selective optogenetic activation of Krause corpuscle afferent terminals evoked penile erection in male mice and vaginal contraction in female mice, while genetic ablation of Krause corpuscles impaired intromission and ejaculation of males and reduced sexual receptivity of females. Thus, Krause corpuscles of the clitoris and penis are highly sensitive mechanical vibration detectors that mediate sexually dimorphic mating behaviours.


Asunto(s)
Clítoris , Mecanorreceptores , Pene , Conducta Sexual Animal , Tacto , Vibración , Animales , Femenino , Masculino , Ratones , Clítoris/inervación , Clítoris/fisiología , Eyaculación/fisiología , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiología , Optogenética , Erección Peniana/fisiología , Pene/inervación , Pene/fisiología , Conducta Sexual Animal/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Tacto/fisiología , Vagina/fisiología , Neuronas/fisiología
2.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38299843

RESUMEN

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Asunto(s)
Membrana Celular , Factor 4E Eucariótico de Iniciación , Virus de la Diarrea Epidémica Porcina , Biosíntesis de Proteínas , Internalización del Virus , Animales , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cadenas beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Virus de la Diarrea Epidémica Porcina/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Tetraspaninas/metabolismo , Células Vero
3.
Genomics ; 116(3): 110852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703969

RESUMEN

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Asunto(s)
Autofagia , Neoplasias Hepáticas , Proteínas tau , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Pronóstico , Línea Celular Tumoral , Survivin/genética , Survivin/metabolismo , Proliferación Celular , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular , Ratones , Apoptosis , Regulación Neoplásica de la Expresión Génica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo
4.
Angew Chem Int Ed Engl ; : e202403597, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752455

RESUMEN

Marine ladder polyethers have attracted the attention of chemists and biologists because of their potent biological activities. Synthetic chemists have attempted to construct their polyether frameworks by epoxide ring-opening cascades, as Nakanishi hypothesis describes. However, Baldwin's rules of ring closure state that exo-selective intramolecular cyclization of epoxy alcohols is preferred over endo-selective cyclization. Herein, we investigated epoxide ring-opening cascades of polyepoxy alcohols in [EMIM]BF4/PFTB (1-ethyl-3-methylimidazolium tetrafluoroborate /perfluoro-tert-butyl alcohol) and found that all-endo products were formed via epoxide-to-epoxonium ring-opening cyclizations (not restricted by Baldwin's rules, which only apply to intramolecular hydroxyl-to-epoxide cyclizations). We determined that the key factor enabling polyepoxy alcohols to undergo a high proportion of all-endo-selective cyclizations was inhibition of exo-selective hydroxyl-to-epoxide cyclization starting from the terminal hydroxyl group of a polyepoxy alcohol. By introducing a slow-release protecting group to the terminal hydroxyl group, we could markedly increase the cyclization yields of polyether fragments with hydrogen atoms at the ring junctions. For the first time, we constructed consecutively fused six-membered-ring and fused seven-, eight-, and nine-membered-ring polyether fragments by epoxide-to-epoxonium ring-opening cyclizations through the addition of a suitable Lewis acid. We also suggest that the biosynthesis of marine ladder polyethers may proceed via epoxide-to-epoxonium ring-opening cyclization of polyepoxide.

5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(1): 62-66, 2024 Jan 15.
Artículo en Zh | MEDLINE | ID: mdl-38269461

RESUMEN

OBJECTIVES: To investigate the risk factors for diabetic ketoacidosis (DKA) in children/adolescents with type 1 diabetes mellitus (T1DM) and to establish a model for predicting the risk of DKA. METHODS: A retrospective analysis was performed on 217 children/adolescents with T1DM who were admitted to General Hospital of Ningxia Medical University from January 2018 to December 2021. Among the 217 children/adolescents,169 cases with DKA were included as the DKA group and 48 cases without DKA were included as the non-DKA group. The risk factors for DKA in the children/adolescents with T1DM were analyzed, and a nomogram model was established for predicting the risk of DKA in children/adolescents with T1DM. RESULTS: For the 217 children/adolescents with T1DM, the incidence rate of DKA was 77.9% (169/217). The multivariate logistic regression analysis showed that high levels of random blood glucose, hemoglobin A1c (HbA1c), blood ketone body, and triglyceride on admission were closely associated with the development of DKA in the children/adolescents with T1DM (OR=1.156, 3.2031015, 20.131, and 9.519 respectively; P<0.05). The nomogram prediction model had a C-statistic of 0.95, with a mean absolute error of 0.004 between the risk of DKA predicted by the nomogram model and the actual risk of DKA, indicating that the model had a good overall prediction ability. CONCLUSIONS: High levels of random blood glucose, HbA1c, blood ketone body, and triglyceride on admission are closely associated with the development of DKA in children/adolescents with T1DM, and targeted intervention measures should be developed to reduce the risk of DKA.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cetosis , Niño , Adolescente , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Glucemia , Hemoglobina Glucada , Estudios Retrospectivos , Factores de Riesgo , Cuerpos Cetónicos , Triglicéridos
6.
J Biol Chem ; 298(12): 102604, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36257406

RESUMEN

During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.


Asunto(s)
Metilación de ADN , Lactancia , Animales , Femenino , Medios de Cultivo Condicionados , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Cabras , Lactancia/genética , Glándulas Mamarias Animales , Proteoma/metabolismo , Transcriptoma , Adipocitos/metabolismo
7.
J Med Virol ; 95(1): e28226, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251738

RESUMEN

Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Animales , Chlorocebus aethiops , Humanos , Células Vero , Replicación Viral , Antivirales/farmacología , Antivirales/uso terapéutico , Citoesqueleto
8.
Brain Behav Immun ; 109: 23-36, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581303

RESUMEN

Synapse loss in medial prefrontal cortex (mPFC) has been implicated in stress-related mood disorders, such as depression. However, the exact effect of synapse elimination in the depression and how it is triggered are largely unknown. Through repeated longitudinal imaging of mPFC in the living brain, we found both presynaptic and postsynaptic components were declined, together with the impairment of synapse remodeling and cross-synaptic signal transmission in the mPFC during chronic stress. Meanwhile, chronic stress also induced excessive microglia phagocytosis, leading to engulfment of excitatory synapses. Further investigation revealed that the elevated complement C3 during the stress acted as the tag of synapses to be eliminated by microglia. Besides, chronic stress induced a reduction of the connectivity between the mPFC and neighbor regions. C3 knockout mice displayed significant reduction of synaptic pruning and alleviation of disrupted functional connectivity in mPFC, resulting in more resilience to chronic stress. These results indicate that complement-mediated excessive microglia phagocytosis in adulthood induces synaptic dysfunction and cortical hypo-connectivity, leading to stress-related behavioral abnormality.


Asunto(s)
Microglía , Derrota Social , Ratones , Animales , Sinapsis , Ratones Noqueados , Plasticidad Neuronal
9.
PLoS Biol ; 18(3): e3000654, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32134919

RESUMEN

Proteasomes are highly abundant and conserved protease complexes that eliminate unwanted proteins in the cells. As a single-chain ATP-independent nuclear proteasome activator, proteasome activator 200 (PA200) associates with 20S core particle to form proteasome complex that catalyzes polyubiquitin-independent degradation of acetylated histones, thus playing a pivotal role in DNA repair and spermatogenesis. Here, we present cryo-electron microscopy (cryo-EM) structures of the human PA200-20S complex and PA200 at 2.72 Å and 3.75 Å, respectively. PA200 exhibits a dome-like architecture that caps 20S and uses its C-terminal YYA (Tyr-Tyr-Ala) to induce the α-ring rearrangements and partial opening of the 20S gate. Our structural data also indicate that PA200 has two openings formed by numerous positively charged residues that respectively bind (5,6)-bisdiphosphoinositol tetrakisphosphate (5,6[PP]2-InsP4) and inositol hexakisphosphate (InsP6) and are likely to be the gates that lead unfolded proteins through PA200 and into the 20S. Besides, our structural analysis of PA200 found that the bromodomain (BRD)-like (BRDL) domain of PA200 shows considerable sequence variation in comparison to other human BRDs, as it contains only 82 residues because of a short ZA loop, and cannot be classified into any of the eight typical human BRD families. Taken together, the results obtained from this study provide important insights into human PA200-induced 20S gate opening for substrate degradation and the opportunities to explore the mechanism for its recognition of H4 histone in acetylation-mediated proteasomal degradation.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteolisis , Relación Estructura-Actividad
10.
Acta Pharmacol Sin ; 44(11): 2322-2330, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37328649

RESUMEN

Clinical application of PD-1 and PD-L1 monoclonal antibodies (mAbs) is hindered by their relatively low response rates and the occurrence of drug resistance. Co-expression of B7-H3 with PD-L1 has been found in various solid tumors, and combination therapies that target both PD-1/PD-L1 and B7-H3 pathways may provide  additional therapeutic benefits. Up to today, however, no bispecific antibodies targeting both PD-1 and B7-H3 have reached the clinical development stage. In this study, we generated a stable B7-H3×PD-L1 bispecific antibody (BsAb) in IgG1-VHH format by coupling a humanized IgG1 mAb against PD-L1 with a humanized camelus variable domain of the heavy-chain of heavy-chain antibody (VHH) against human B7-H3. The BsAb exhibited favorable thermostability, efficient T cell activation, IFN-γ production, and antibody-dependent cell-mediated cytotoxicity (ADCC). In a PBMC humanized A375 xenogeneic tumor model, treatment with BsAb (10 mg/kg, i.p., twice a week for 6 weeks) showed enhanced antitumor activities compared to monotherapies and, to some degree, combination therapies. Our results suggest that targeting both PD-1 and B7-H3 with BsAbs increases their specificities to B7-H3 and PD-L1 double-positive tumors and induces a synergetic effect. We conclude that B7-H3×PD-L1 BsAb is favored over mAbs and possibly combination therapies in treating B7-H3 and PD-L1 double-positive tumors.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Leucocitos Mononucleares/metabolismo , Anticuerpos Monoclonales , Inmunoglobulina G/metabolismo
11.
Appl Microbiol Biotechnol ; 107(5-6): 1931-1946, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36800029

RESUMEN

Pigeon pea hairy root cultures (PPHRCs) have been proven to be a promising alternative for the production of health-beneficial phenolic compounds, such as the most important health-promoting compound, i.e., cajaninstilbene acid (CSA). In this study, PPHRCs were cocultured with live Aspergillus fungi for further improving phenolic productivity via biological elicitation. Aspergillus oryzae CGMCC 3.951 (AO 3.951) was found to be the optimal fungus that could achieve the maximum increment of CSA (10.73-fold increase) in 42-day-old PPHRCs under the inoculum size of mycelia 0.50% and cocultivation time 36 h. More precisely, the contents of CSA in hairy roots and culture media after fungal elicitation increased by 9.87- and 62.18-fold over control, respectively. Meanwhile, the contents of flavonoid glycosides decreased, while aglycone yields increased upon AO 3.951 elicitation. Moreover, AO 3.951 could trigger the oxidative stress and pathogen defense response thus activating the expression of biosynthesis- and ABC transporter-related genes, which contributed to the intracellular accumulation and extracellular secretion of phenolic compounds (especially CSA) in PPHRCs. And PAL2, 4CL2, STS1, and I3'H were likely to be the potential key enzyme genes regulating the biosynthesis of CSA, and ABCB11X1-1, ABCB11, and ABCG24X2 were closely related to the transmembrane transport of CSA. Overall, the cocultivation approach could make PPHRCs more commercially attractive for the production of high-value phenolic compounds such as CSA and flavonoid aglycones in nutraceutical/medicinal fields. And the elucidation of crucial biosynthesis and transport genes was important for systematic metabolic engineering aimed at increasing CSA productivity. KEY POINTS: • Cocultivation of PPHRCs and live fungi was to enhance CSA production and secretion. • PPHRCs augmented CSA productivity 10.73-fold when cocultured with AO 3.951 mycelia. • Several biosynthesis and transport genes related to CSA production were clarified.


Asunto(s)
Cajanus , Cajanus/metabolismo , Técnicas de Cocultivo , Pisum sativum/metabolismo , Flavonoides/metabolismo , Fenoles/metabolismo , Aspergillus/metabolismo , Raíces de Plantas/microbiología
12.
Lasers Surg Med ; 55(5): 464-470, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37021488

RESUMEN

OBJECTIVE: The present study aimed to investigate the efficacy and safety of pulsed dye laser (PDL) combined with fractional CO2 laser in the treatment of burn scars in pediatric patients. METHODS: The present retrospective study enrolled 60 pediatric patients with burn scars from July 2017 to June 2021. In the 4-month treatment period, all patients received PDL treatment every 1 month and received fractional CO2 laser treatment every 3 months. The Patient and Observer Scar Assessment Scale (POSAS) was used to evaluate the scar condition before the treatment as well as 6 months after the whole treatment. The satisfaction of the patient's parents was collected and recorded 6 months after the treatment. Complications were recorded during the treatment period and at follow-up visits. RESULTS: Among all patients, 38 (63.33%) cases were scald-induced scars and 22 (36.67%) cases were burn-induced scars. The mean diameter of the scar area was 107.53 ± 2.92 cm2 . For the measurement of the patient part of POSAS, all indices of pain, itching, color, stiffness, thickness, and irregularity, as well as the total scores were remarkably lower after 6 months of the treatment compared with the baseline (p < 0.05). For the observer part of POSAS, the indices of vascularization, pigmentation, thickness, relief, pliability, and surface area, as well as the total scores were markedly decreased after treatment (p < 0.05). The total satisfactory rate was 96.67% (58/60). No severe complications nor scar aggravation was observed. CONCLUSION: The combination of PDL and fractional CO2 laser showed good efficacy in the treatment of pediatric patients with burn scars with no severe complications and can be recommended in clinical application.


Asunto(s)
Quemaduras , Cicatriz Hipertrófica , Láseres de Colorantes , Láseres de Gas , Humanos , Niño , Cicatriz/etiología , Cicatriz/terapia , Cicatriz/patología , Dióxido de Carbono , Láseres de Colorantes/uso terapéutico , Cicatriz Hipertrófica/patología , Estudios Retrospectivos , Resultado del Tratamiento , Láseres de Gas/uso terapéutico , Quemaduras/complicaciones , Quemaduras/terapia
13.
BMC Nephrol ; 24(1): 170, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312042

RESUMEN

BACKGROUND: The association between serum ß2-microglobulin (ß2M) levels and the risk of all-cause and cardiovascular disease (CVD) mortality and the incidence of cardiovascular events (CVEs) in patients undergoing maintenance hemodialysis (MHD) is inconclusive. Furthermore, no study has been performed in China on the significance of serum ß2M levels in MHD patients. Therefore, this study investigated the aforementioned association in MHD patients. METHODS: In this prospective cohort study, 521 MHD patients were followed at Dalian Municipal Central Hospital affiliated with Dalian University of Technology from December 2019 to December 2021. The serum ß2M levels were categorized into three tertiles, and the lowest tertile served as the reference group. Survival curves were calculated by the Kaplan-Meier method. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazard models. Sensitivity analysis was performed by excluding patients with CVD at baseline. RESULTS: During the follow-up period of 21.4 ± 6.3 months, there were 106 all-cause deaths, of which 68 were caused by CVD. When excluding CVD patients at baseline, there were 66 incident CVEs. Kaplan-Meier analysis revealed that the risk of all-cause and CVD mortality in the highest tertile of serum ß2M levels was significantly higher than that in the lowest tertile (P < 0.05), but not for the CVEs (P > 0.05). After adjusting for potential confounders, serum ß2M levels were positively associated with the risk of all-cause (HR = 2.24, 95% CI = 1.21-4.17) and CVD (HR = 2.54, 95% CI = 1.19-5.43) mortality, and a linear trend was evident (P < 0.05). Besides, the results of sensitivity analysis were consistent with the main findings. However, we didn't observed the significant association between serum ß2M levels and CVEs (P > 0.05). CONCLUSION: The serum ß2M level may be a significant predictor of the risk of all-cause and CVD mortality in MHD patients. Further studies are needed to confirm this finding.


Asunto(s)
Enfermedades Cardiovasculares , Microglobulina beta-2 , Humanos , Pueblo Asiatico , Enfermedades Cardiovasculares/mortalidad , Pueblos del Este de Asia , Estudios Prospectivos , Diálisis Renal/mortalidad , Microglobulina beta-2/sangre
14.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770712

RESUMEN

The tuberous root of Ophiopogon japonicus (Thunb.) Ker-Gawl. is a well-known Chinese medicine also called Maidong (MD) in Chinese. It could be divided into "Chuanmaidong" (CMD) and "Zhemaidong" (ZMD), according to the geographic origins. Meanwhile, the root of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma (SMD) is occasionally used as a substitute for MD in the market. In this study, a reliable pressurized liquid extraction and HPLC-DAD-ELSD method was developed for the simultaneous determination of nine chemical components, including four steroidal saponins (ophiopojaponin C, ophiopogonin D, liriopesides B and ophiopogonin D'), four homoisoflavonoids (methylophiopogonone A, methylophiopogonone B, methylophiopogonanone A and methylophiopogonanone B) and one sapogenin (ruscogenin) in CMD, ZMD and SMD. The method was validated in terms of linearity, sensitivity, precision, repeatability and accuracy, and then applied to the real samples from different origins. The results indicated that there were significant differences in the contents of the investigated compounds in CMD, ZMD and SMD. Ruscogenin was not detected in all the samples, and liriopesides B was only found in SMD samples. CMD contained higher ophiopogonin D and ophiopogonin D', while the other compounds were more abundant in ZMD. Moreover, the anticancer effects of the herbal extracts and selected components against A2780 human ovarian cancer cells were also compared. CMD and ZMD showed similar cytotoxic effects, which were stronger than those of SMD. The effects of MD may be due to the significant anticancer potential of ophiopognin D' and homoisoflavonoids. These results suggested that there were great differences in the chemical composition and pharmacological activity among CMD, ZMD and SMD; thus, their origins should be carefully considered in clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Ophiopogon , Neoplasias Ováricas , Saponinas , Compuestos de Espiro , Humanos , Femenino , Ophiopogon/química , Línea Celular Tumoral , Saponinas/farmacología , Saponinas/química , Medicamentos Herbarios Chinos/química
15.
Front Neuroendocrinol ; 63: 100939, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411573

RESUMEN

We aimed to assess the sex-inclusive and sex-based analysis bias in alcohol research for the past 20 years. Data were abstracted from 2988 original research articles published from 2000 through 2019 in 51 representative journals across 9 biomedical disciplines. An analysis in 5-year intervals revealed that the percentage of studies using participants of both sexes was significantly higher between 2015 and 2019 than between 2000 and 2014. When stratified, clinical studies showed a higher percentage of both-sex studies compared to basic studies using animals. The reasons for the use of single-sex cohorts mainly included insufficient participant numbers and misconceptions surrounding the hormonal variability of females. Implementation of the NIH SABV policy promoted the ratio of NIH-funded papers with sex-based analyses. In conclusion, sex bias in alcohol-related biomedical studies has improved over the past 20 years, particularly after the implementation of the SABV policy. Although clinical studies increasingly included sex-based analysis, basic studies were biased towards the use of males.


Asunto(s)
Investigación Biomédica , Sexismo , Animales , Femenino , Humanos , Masculino , Factores Sexuales
16.
EMBO Rep ; 21(4): e47857, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32133764

RESUMEN

Emerging evidence implicates that low levels of ATP in the extracellular space may contribute to the pathophysiology of major depressive disorder (MDD). The concentration of extracellular ATP is regulated by its hydrolase ectonucleotide tri(di)phosphohydrolase (ENTPD). However, the role of ENTPD in depression remains poorly understood. Here we examine the role of CD39 (known as ENTPD1) in mouse depression-like behavior induced by chronic social defeat stress (CSDS). We demonstrate that CSDS enhances the expression and activity of CD39 in hippocampus. The CD39 functional analog apyrase also induces depression-like behavior, which can be ameliorated by ATP replenishment. Pharmacological inhibition and genetic silencing of CD39 has an antidepressant-like effect via increasing hippocampal extracellular ATP concentration, accompanied with an increase in hippocampal neurogenesis and dendritic spine numbers in defeated mice. These results suggest that hippocampal CD39 contributes to CSDS-induced depression-like behavior via hydrolyzing extracellular ATP, indicating that CD39 may be a promising new target for the treatment of depression.


Asunto(s)
Adenosina Trifosfato/metabolismo , Apirasa , Trastorno Depresivo Mayor , Animales , Apirasa/genética , Apirasa/metabolismo , Depresión/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL
17.
BMC Gastroenterol ; 22(1): 369, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915440

RESUMEN

BACKGROUND: To predict the histological grade and microvascular invasion (MVI) in patients with HCC. METHODS: A retrospective analysis was conducted on 175 patients who underwent MRI enhancement scanning (from September 2016.9 to October 2020). They were divided into MVI positive, MVI negative, Grade-high and Grade-low groups. RESULTS: The AFP of 175 HCC patients distributed in MVI positive and negative groups, Grade-low and Grade-high groups were statistically significant (P = 0.002 and 0.03, respectively). Multiple HCC lesions were more common in MVI positive and Grade-high groups. Correspondingly, more single lesions were found in MVI negative and Grade-low groups (P = 0.005 and 0.019, respectively). Capsule on MRI was more common in MVI negative and Grade-high groups, and the difference was statistically significant (P = 0.02 and 0.011, respectively). There were statistical differences in the distribution of three MRI signs: artistic rim enhancement, artistic peripheral enhancement, and tumor margin between MVI positive and MVI negative groups (P = 0.001, < 0.001, and < 0.001, respectively). Tumor hypointensity on HBP was significantly different between MVI positive and negative groups (P < 0.001). CONCLUSIONS: Our research shows that preoperative enhanced imaging can be used to predict MVI and tumor differentiation grade of HCC. The prognosis of MVI-negative group was better than that of MVI-positive group.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Imagen por Resonancia Magnética/métodos , Invasividad Neoplásica , Cuidados Preoperatorios/métodos , Estudios Retrospectivos
18.
Environ Sci Technol ; 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904357

RESUMEN

The transmission of most respiratory pathogens, including SARS-CoV-2, occurs via virus-containing respiratory droplets, and thus, factors that affect virus viability in droplet residues on surfaces are of critical medical and public health importance. Relative humidity (RH) is known to play a role in virus survival, with a U-shaped relationship between RH and virus viability. The mechanisms affecting virus viability in droplet residues, however, are unclear. This study examines the structure and evaporation dynamics of virus-containing saliva droplets on fomites and their impact on virus viability using four model viruses: vesicular stomatitis virus, herpes simplex virus 1, Newcastle disease virus, and coronavirus HCoV-OC43. The results support the hypothesis that the direct contact of antiviral proteins and virions within the "coffee ring" region of the droplet residue gives rise to the observed U-shaped relationship between virus viability and RH. Viruses survive much better at low and high RH, and their viability is substantially reduced at intermediate RH. A phenomenological theory explaining this phenomenon and a quantitative model analyzing and correlating the experimentally measured virus survivability are developed on the basis of the observations. The mechanisms by which RH affects virus viability are explored. At intermediate RH, antiviral proteins have optimal influence on virions because of their largest contact time and overlap area, which leads to the lowest level of virus activity.

19.
J Am Acad Dermatol ; 87(6): 1328-1335, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031838

RESUMEN

BACKGROUND: Observational studies have shown promising therapeutic effects of long-pulsed neodymium-doped yttrium-aluminum-garnet (LP-Nd:YAG) laser on warts. OBJECTIVE: To evaluate whether LP-Nd:YAG laser was superior to cryotherapy for cutaneous warts. METHODS: In this study, 150 adult patients with warts were randomized equally to receive laser or cryotherapy every 3 to 4 weeks, for a maximum of 4 sessions. The primary outcomes were the cure rates at 16 weeks and 6 months; secondary outcomes included time to clearance of warts and treatment-related adverse effects. RESULTS: There was no difference in the cure rate for laser versus cryotherapy at 16 weeks (54.1% vs 46.7%, respectively) and 6 months (59.5% vs 57.3%, respectively). However, time to clearance of warts, up to 16 weeks and 6 months, tended to be shorter for laser versus cryotherapy (P = .04 and .08, respectively). Post hoc analyses showed a significantly higher cure rate for laser versus cryotherapy in 3 subgroups of human papillomavirus 2/27/57-induced recalcitrant warts but not in their counterpart subgroups. Laser had more mild adverse effects. LIMITATIONS: Single center. CONCLUSIONS: The overall therapeutic effects of LP-Nd:YAG laser were similar to cryotherapy, but laser may be more effective to relatively recalcitrant warts and may be associated with shorter time to clearance of warts.


Asunto(s)
Láseres de Estado Sólido , Verrugas , Adulto , Humanos , Láseres de Estado Sólido/uso terapéutico , Neodimio , Resultado del Tratamiento , Verrugas/terapia , Crioterapia/efectos adversos
20.
Mol Biol Rep ; 49(8): 7837-7848, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35733070

RESUMEN

BACKGROUND: Hepatic lipid accumulation is one of the main pathological features of alcoholic liver disease (ALD). Metformin serves as an AMPK activator and has been shown to have lipids lowering effects in non-alcoholic fatty liver disease (NAFLD), but its role in ALD remains unclear. The purpose of this study was to explore the potential mechanism of metformin regulating lipid metabolism in ALD. METHODS AND RESULTS: In vitro and in vivo ALD models were established using AML12 cells and C57BL/6 mice, respectively. To determine the effect of metformin on ALD in vitro, the concentration of cellular triglyceride was examined by Nile red staining and a biochemical kit. To further reveal the role of metformin on ALD in vivo, liver tissues were examined by HE and oil red O staining, and the levels of ALT and AST in serum were determined via an automatic biochemical analyzer. The expression of mRNA and proteins were measured using qRT-PCR and Western blot, respectively. The role of the LKB1/AMPK/ACC axis on metformin regulating ethanol-induced lipid accumulation was evaluated by siRNA and AAV-shRNA interference. The results showed metformin reduced the ethanol-induced lipid accumulation in AML12 cells through activating AMPK, inhibiting ACC, reducing SREBP1c, and increasing PPARα. In addition, compared with control mice, metformin treatment inhibited ethanol-induced liver triglyceride accumulation and the increase of ALT and AST in serum. Interference with LKB1 attenuated the effect of metformin on ethanol-induced lipid accumulation both in vitro and in vivo. CONCLUSION: Metformin protects against lipid formation in ALD by activating the LKB1/AMPK/ACC axis.


Asunto(s)
Hepatopatías Alcohólicas , Metformina , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Etanol/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Metformina/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA