Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 17(10): 6241-6247, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28876939

RESUMEN

Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (EF). However, low-D metals possessing a limited density of states at EF can enable gate-tunable work functions and contact barriers. Moreover, a seamless contact with native bonds at the interface, without localized interfacial states, can serve as an optimal electrode. To realize such a seamless contact, one needs to develop atomically precise heterojunctions from the atom up. Here, we demonstrate an all-carbon staircase contact to ultranarrow armchair graphene nanoribbons (aGNRs). The coherent heterostructures of width-variable aGNRs, consisting of 7, 14, 21, and up to 56 carbon atoms across the width, are synthesized by a surface-assisted self-assembly process with a single molecular precursor. The aGNRs exhibit characteristic vibrational modes in Raman spectroscopy. A combined scanning tunneling microscopy and density functional theory study reveals the native covalent-bond nature and quasi-metallic contact characteristics of the interfaces. Our electronic measurements of such seamless GNR staircase constitute a promising first step toward making low resistance contacts.

2.
ACS Nano ; 18(11): 8511-8516, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38446825

RESUMEN

2D transition metal dichalcogenide (MX2) semiconductors are promising candidates for electronic and optoelectronic applications. However, they have relatively low charge carrier mobility at room temperature. Defects are important scattering sources, while their quantitative roles remain unclear. Here we employ first-principles methods to accurately calculate the scatterings by different types of defects (chalcogen vacancies, antisites, and oxygen substitutes) and the resulting carrier mobilities for various MX2 (M = Mo/W and X = S/Se). We find that for the same X, WX2 always has a higher mobility than MoX2, regardless of defect type and carrier type. Further analyses attribute this to the universally weaker electron-defect coupling in WX2. Moreover, we find filling the chalcogen vacancy with O always improves the mobility, while filling by a metal atom decreases the mobility except for WSe2. Finally, we identify the critical defect concentrations where the defect- and phonon-limited mobilities cross, providing guidelines for experimental optimization.

3.
Chem Sci ; 12(47): 15637-15644, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-35003594

RESUMEN

Understanding the reaction mechanisms of dehydrogenative Caryl-Caryl coupling is the key to directed formation of π-extended polycyclic aromatic hydrocarbons. Here we utilize isotopic labeling to identify the exact pathway of cyclodehydrogenation reaction in the on-surface synthesis of model atomically precise graphene nanoribbons (GNRs). Using selectively deuterated molecular precursors, we grow seven-atom-wide armchair GNRs on a Au(111) surface that display a specific hydrogen/deuterium (H/D) pattern with characteristic Raman modes. A distinct hydrogen shift across the fjord of Caryl-Caryl coupling is revealed by monitoring the ratios of gas-phase by-products of H2, HD, and D2 with in situ mass spectrometry. The identified reaction pathway consists of a conrotatory electrocyclization and a distinct [1,9]-sigmatropic D shift followed by H/D eliminations, which is further substantiated by nudged elastic band simulations. Our results not only clarify the cyclodehydrogenation process in GNR synthesis but also present a rational strategy for designing on-surface reactions towards nanographene structures with precise hydrogen/deuterium isotope labeling patterns.

4.
ACS Nano ; 14(4): 5090-5098, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32283017

RESUMEN

Solid-state narrow-band light emitters are on-demand for quantum optoelectronics. Current approaches based on defect engineering in low-dimensional materials usually introduce a broad range of emission centers. Here, we report narrow-band light emission from covalent heterostructures fused to the edges of graphene nanoribbons (GNRs) by controllable on-surface reactions from molecular precursors. Two types of heterojunction (HJ) states are realized by sequentially synthesizing GNRs and graphene nanodots (GNDs) and then coupling them together. HJs between armchair GNDs and armchair edges of the GNR are coherent and give rise to narrow-band photoluminescence. In contrast, HJs between the armchair GNDs and the zigzag ends of GNRs are defective and give rise to nonradiative states near the Fermi level. At low temperatures, sharp photoluminescence emissions with peak energy range from 2.03 to 2.08 eV and line widths of 2-5 meV are observed. The radiative HJ states are uniform, and the optical transition energy is controlled by the band gaps of GNRs and GNDs. As these HJs can be synthesized in a large quantity with atomic precision, this finding highlights a route to programmable and deterministic creation of quantum light emitters.

5.
Chem Commun (Camb) ; 55(79): 11848-11851, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31528899

RESUMEN

The influence of substrate steps on the bottom-up synthesis of atomically precise graphene nanoribbons (GNRs) on an Au(111) surface is investigated. Straight surface steps are found to promote the assembly of long and compact arrays of polymers with enhanced interchain π-π stacking interactions, which create a steric hindrance effect on cyclodehydrogenation to suppress the H passivation of polymer ends. The modified two-stage growth process results in periodic arrays of GNRs with doubled average length near step edges.

6.
Nat Commun ; 8: 14815, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287090

RESUMEN

In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer-GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. This finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA