Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35630846

RESUMEN

Getting drinking water from seawater is a hope and long-term goal that has long been explored. Here, we report graphene-loaded nonwoven fabric membranes for seawater purification based on photothermal heating. The photothermal membrane of non-woven fabric loaded with graphene oxide has high light absorption and strong heating effect, and its evaporation rate about 5 times higher than that of non-woven fabric. Under the condition of light intensity of 1 kW m-2, the evaporation rate can reach 1.33 kg m-2 h-1. The results of cell activity test showed that the concentration of bacteria after photothermal membrane treatment decreased significantly. The photothermal membrane can be used for many times without greatly reducing the evaporation efficiency, which means that it is suitable for regional water purification and seawater desalination.

2.
Bioact Mater ; 7: 112-125, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34466721

RESUMEN

Aggregation-induced emission luminogens (AIEgens) exhibit efficient cytotoxic reactive oxygen species (ROS) generation capability and unique light-up features in the aggregated state, which have been well explored in image-guided photodynamic therapy (PDT). However, the limited penetration depth of light in tissue severely hinders AIEgens as a candidate for primary or adjunctive therapy for clinical applications. Coincidentally, microwaves (MWs) show a distinct advantage for deeper penetration depth in tissues than light. Herein, for the first time, we report AIEgen-mediated microwave dynamic therapy (MWDT) for cancer treatment. We found that two AIEgens (TPEPy-I and TPEPy-PF6) served as a new type of microwave (MW) sensitizers to produce ROS, including singlet oxygen (1O2), resulting in efficient destructions of cancer cells. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live/dead assays reveal that the two AIEgens when activated by MW irradiation can effectively kill cancer cells with average IC-50 values of 2.73 and 3.22 µM, respectively. Overall, the ability of the two AIEgens to be activated by MW not only overcomes the limitations of conventional PDT, but also helps to improve existing MW ablation therapy by reducing the MW dose required to achieve the same therapeutic outcome, thus reducing the occurrence of side-effects of MW radiation.

3.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35683645

RESUMEN

In this paper, a novel rare-earth-doped upconverted nanomaterial NaYF4:Yb,Tm fluorescent probe is reported, which can detect cancer-related specific miRNAs in low abundance. The detection is based on an upconversion of nanomaterials NaYF4:Yb,Tm, with emissions at 345, 362, 450, 477, 646, and 802 nm, upon excitation at 980 nm. The optimal Yb3+:Tm3+ doping ratio is 40:1, in which the NaYF4:Yb,Tm nanomaterials have the strongest fluorescence. The NaYF4:Yb, Tm nanoparticles were coated with carboxylation or carboxylated protein, in order to improve their water solubility and biocompatibility. The two commonly expressed proteins, miRNA-155 and miRNA-150, were detected by the designed fluorescent probe. The results showed that the probes can distinguish miRNA-155 well from partial and complete base mismatch miRNA-155, and can effectively distinguish miRNA-155 and miRNA-150. The preliminary results indicate that these upconverted nanomaterials have good potential for protein detection in disease diagnosis, including early cancer detection.

4.
J Biomed Nanotechnol ; 17(3): 501-508, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33875084

RESUMEN

Photothermal ablation therapy (PTA) has been widely reported; however, it is not possible to predict the internal temperature of the tumor in real time that causes ineffective treatment and normal tissue burns. Here, we have designed a photothermal therapy strategy under real-time temperature monitoring by injecting gold nanorods (AuNRs) and NaYF4: Yb3+ /Er3+ into the tumor site where AuNRs are used for PTA of cancer cells by converting the absorbed energy into heat and using Yb3+ , Er3+-NaYF 4 phosphors to monitor the temperature inside the tumor. Our experiments confirm the effectiveness of this strategy, which is expected to be an aid in the development of real-time temperature monitoring and effective photothermal therapy for the treatment of cancers.


Asunto(s)
Neoplasias Renales , Nanotubos , Línea Celular Tumoral , Oro , Humanos , Fototerapia , Terapia Fototérmica , Temperatura
5.
Bioact Mater ; 6(6): 1541-1554, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33294732

RESUMEN

Iodine ion is one of the most indispensable anions in living organisms, particularly being an important substance for the synthesis of thyroid hormones. Curcumin is a yellow-orange polyphenol compound derived from the rhizome of Curcuma longa L., which has been commonly used as a spice and natural coloring agent, food additives, cosmetics as well as Chinese medicine. However, excess curcumin may cause DNA inactivation, lead to a decrease in intracellular ATP levels, and trigger the tissue necrosis. Therefore, quantitative detection of iodine and curcumin is of great significance in the fields of food and life sciences. Herein, we develop nitrogen-doped fluorescent carbon dots (NCDs) as a multi-mechanism detection for iodide and curcumin in actual complex biological and food samples, which was prepared by a one-step solid-phase synthesis using tartaric acid and urea as precursors without adding any other reagents. An assembled NCDs-Hg2+ fluorescence-enhanced sensor for the quantitative detection of I- was established based on a fluorescence "turn-off-on" mechanism in a linear range of 0.3-15 µM with a detection limit of 69.4 nM and successfully quantified trace amounts of I- in water samples and urine sample. Meanwhile, the as-synthesized NCDs also can be used as a fluorescent quenched sensor for curcumin detection based on the synergistic internal filtration effect (IFE) and static quenching, achieving a good linear range of 0.1-20 µM with a satisfactory detection limit of 29.8 nM. These results indicate that carbon dots are potential sensing materials for iodine and curcumin detection for the good of our health.

6.
Nanomaterials (Basel) ; 11(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34684916

RESUMEN

Rare Earth Upconversion nanoparticles (UCNPs) are a type of material that emits high-energy photons by absorbing two or more low-energy photons caused by the anti-stokes process. It can emit ultraviolet (UV) visible light or near-infrared (NIR) luminescence upon NIR light excitation. Due to its excellent physical and chemical properties, including exceptional optical stability, narrow emission band, enormous Anti-Stokes spectral shift, high light penetration in biological tissues, long luminescent lifetime, and a high signal-to-noise ratio, it shows a prodigious application potential for bio-imaging and photodynamic therapy. This paper will briefly introduce the physical mechanism of upconversion luminescence (UCL) and focus on their research progress and achievements in bio-imaging, bio-detection, and photodynamic therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA