Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Bioconjug Chem ; 35(6): 737-743, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38738511

RESUMEN

Radiation therapy is one of the most common treatments for cancer. However, enhancing tumors' radiation sensitivity and overcoming tolerance remain a challenge. Previous studies have shown that the Ras signaling pathway directly influences tumor radiation sensitivity. Herein, we designed a series of Ras-targeting stabilized peptides, with satisfactory binding affinity (KD = 0.13 µM with HRas) and good cellular uptake. Peptide H5 inhibited downstream phosphorylation of ERK and increased radio-sensitivity in HeLa cells, resulting in significantly reduced clonogenic survival. The stabilized peptides, designed with an N-terminal nucleation strategy, acted as potential radio-sensitizers and broadened the applications of this kind of molecule. This is the first report of using stabilized peptides as radio-sensitizers, broadening the applications of this kind of molecule.


Asunto(s)
Péptidos , Tolerancia a Radiación , Proteínas ras , Humanos , Péptidos/química , Péptidos/farmacología , Células HeLa , Tolerancia a Radiación/efectos de los fármacos , Proteínas ras/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Supervivencia Celular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia
2.
Pharmacol Res ; 176: 106059, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34998973

RESUMEN

Skp1-Cul1-F-box protein (SCF) ubiquitin E3 ligases play important roles in cancer development and serve as a promising therapeutic target in cancer therapy. Brusatol (Bru), a known Nrf2 inhibitor, holds promise for treating a wide range of tumors; however, the direct targets of Bru and its anticancer mode of action remain unclear. In our study, 793 Bru-binding candidate proteins were identified by using a biotin-brusatol conjugate (Bio-Bru) followed by streptavidin-affinity pull down-based mass spectrometry. We found that Bru can directly bind to Skp1 and disrupt the interactions of Skp1 with the F-box protein Skp2, leading to the inhibition of the Skp2-SCF E3 ligase. Bru inhibited both proliferation and migration via promoting the accumulation of the substrates p27 and E-cadherin; Skp1 overexpression attenuated while Skp1 knockdown enhanced these effects of Bru in non-small cell lung cancer (NSCLC) cells. Moreover, Bru binding to Skp1 also inhibited the ß-TRCP-SCF E3 ligase. In both subcutaneous and orthotopic NSCLC xenografts, Bru significantly inhibited the growth and metastasis of NSCLC through targeting SCF complex and upregulating p27 and E-cadherin protein levels. These data demonstrate that Bru is a Skp1-targeting agent that may have therapeutic potentials in lung cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Biotina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Cuassinas/uso terapéutico , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Biotina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Cuassinas/farmacología , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo
3.
Biomed Chromatogr ; 35(3): e5003, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33063880

RESUMEN

Dahuang-Mudan decoction (DMD) is a formula that has been widely used as a complementary treatment for inflammatory bowel disease (IBD). However, the mechanism of action of DMD in IBD has not been clearly elucidated. Therefore, we developed a metabolomics-based method to evaluate the effects and potential mechanisms of DMD in a 2,4,6-trinitobenzene sulfonic acid (TNBS)-induced colitis model. The ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOF-MS) method combined with multiple analysis approaches including principal component analysis, partial least square discriminant analysis and orthogonal partial least square discriminant analysis were used to investigate the different urinary metabolites. We identified 29 potential biomarkers of TNBS-induced colitis that returned to normal conditions after DMD administration. Pathway analysis indicated that changes in these metabolites were associated with cysteine and methionine metabolism, citric acid cycle, glycolysis and glycolic regeneration, pyruvate metabolism, biosynthesis of valine, leucine and isoleucine, biosynthesis of primary bile acids, glycine, serine and threonine metabolism, caffeine metabolism, arginine and proline metabolism and phenylalanine metabolism. It is worth noting that DMD has potential therapeutic effects on TNBS-induced colitis, which functions by restoring the balance of multiple disturbed pathways to a normal condition. This study suggests the reliability of metabolomics-based approaches to identifying biomarkers and pathways, which facilitate further investigation of the potential mechanisms of DMD.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Colitis/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Animales , Biomarcadores/orina , Colitis/inducido químicamente , Colitis/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Espectrometría de Masas/métodos , Ratas , Reproducibilidad de los Resultados , Ácido Trinitrobencenosulfónico/efectos adversos
4.
J Sep Sci ; 42(5): 1088-1104, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663861

RESUMEN

Dendrobium huoshanense, a unique species in the genus Orchidaceae, is only found in China and is known as "mihu". Due to the lack of quality control, the use of D. huoshanense in the herbal market has been limited. In this study, methods based on thin-layer chromatography, high-performance liquid chromatography and high-performance liquid chromatography coupled with electrospray ionization multi-stage tandem mass spectrometry were used to identify the flavonoids in D. huoshanense and distinguish this species from other Dendrobium species. Using thin-layer chromatography, a characteristic band was observed for D. huoshanense, and this band was absent from the thin-layer chromatography plates of other Dendrobium species. Then, using high-performance liquid chromatography, nine peaks of flavonoids were observed in the chromatograms of ten batches of D. huoshanense. Ultimately, 22 flavonoids in D. huoshanense were identified by multi-stage tandem mass spectrometry, and 11 of these compounds are being reported from D. huoshanense for the first time. In addition, two compounds both with molecular weights of 710, were identified as being unique to D. huoshanense; one of these compounds, apigenin-6-C-α-L-rhamnosyl-(1→2)-ß-D-glucoside-8-C-α-L-arabinoside, was proven to be responsible for the characteristic thin-layer chromatography band of D. huoshanense. These analysis methods can be applied for the identification and quality control of D. Huoshanense.


Asunto(s)
Dendrobium/química , Flavonoides/análisis , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Dendrobium/clasificación , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
5.
Molecules ; 24(1)2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609689

RESUMEN

ViceninII is a naturally flavonoid glycoside extracted from Dendrobium officinale, a precious Chinese traditional herb, has been proven to be valuable for cancer treatment. Transforming growth factor-ß1 (TGF-ß1), promotes the induction of epithelial⁻mesenchymal transition (EMT), a process involved in the metastasis of cells that leads to enhanced migration and invasion. However, there is no previously evidence that ViceninII has an inhibitory effect on cancer metastasis, specifically on the TGF-ß1-induced EMT process in lung adenocarcinoma cells. In this experiment, we used UV, ESIMS, and NMR to identify the structure of ViceninII.A549 and H1299 cells were treated with TGF-ß1 in the absence and presence of ViceninII, and subsequent migration and invasion were measured by wound-healing and transwell assays. The protein localization and expressions were detected by immunofluorescence and Western blotting. The results indicated that TGF-ß1 induced spindle-shaped changes, increased migration and invasion, and upregulated or downregulated the relative expression of EMT biomarkers. Meanwhile, these alterations were significantly inhibited when co-treated with ViceninII and inhibitors LY294002 and SB431542. In conclusion, ViceninII inhibited TGF-ß1-induced EMT via the deactivation of TGF-ß/Smad and PI3K/Akt/mTOR signaling pathways.This is the first time that the anti-metastatic effects of ViceninII have been demonstrated, and their molecular mechanisms provided.


Asunto(s)
Apigenina/farmacología , Dendrobium/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucósidos/farmacología , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apigenina/aislamiento & purificación , Benzamidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromonas/farmacología , Dioxoles/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Quimioterapia Combinada , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucósidos/aislamiento & purificación , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estructura Molecular , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Mol Cell Biochem ; 439(1-2): 117-129, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28801702

RESUMEN

Senescence-associated secretory phenotype (SASP) factors, such as IL-6 and IL-8, are extremely critical in tissue microenvironment. Senescent human fibroblasts facilitate epithelial-mesenchymal transition (EMT) in premalignant epithelial cells mainly through the secretion of SASP factors. Meanwhile, premalignant human HaCaT Keratinocyte (HaCaT) cells as immortal epithelial cells are susceptible to malignant transformation. Paeonol, an herbal phenolic component found in peonies, exerts anti-aging and anti-tumor efficacies, while the molecular mechanisms of paeonol on EMT in premalignant HaCaT cells induced by SASP factors are unclear. In this study, we first established a senescent human fetal lung fibroblast MRC-5 cell model using hydrogen peroxide evaluated by senescence-associated ß-galactosidase assay. Upon paeonol treatment, intracellular reactive oxygen species levels in aging MRC-5 cells were significantly decreased via regulation of nuclear translocation of Nrf2. Then we curiously studied whether the aging MRC-5 cell-conditioned medium could induce EMT in premalignant HaCaT cells, and the results showed that paeonol significantly reduced the clonogenic, migratory, and invasive capacities of premalignant HaCaT cells potentially induced by IL-6 and IL-8. Moreover, we found that paeonol notably altered pluripotency of EMT-associated markers via the modulation of ERK and TGF-ß1/Smad pathway in premalignant HaCaT cells. These findings suggest that paeonol may be used as an adjuvant therapy for SASP factor-mediated EMT in premalignant lesion.


Asunto(s)
Acetofenonas/farmacología , Senescencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/metabolismo , Queratinocitos/metabolismo , Línea Celular , Medios de Cultivo Condicionados/farmacología , Fibroblastos/citología , Humanos , Queratinocitos/citología
7.
Int J Mol Sci ; 19(6)2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29882900

RESUMEN

Dendrobium officinale is a precious medicinal herb and health food, and its pharmacological actions have been studied and proved. However, the mechanisms by which its active flavonoid glycosides affect epithelial⁻mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) cells, such as HepG2 and Bel-7402 cells, have not been previously investigated. Therefore, we investigated whether isoviolanthin extracted from the leaves of Dendrobium officinale inhibits transforming growth factor (TGF)-ß1-induced EMT in HCC cells. In this study, the physicochemical properties and structure of isoviolanthin were identified by HPLC, UV, ESIMS, and NMR and were compared with literature data. HCC cells were pretreated with 10 ng/mL TGF-ß1 to induce EMT and then treated with isoviolanthin. Herein, we found that isoviolanthin exhibited no cytotoxic effects on normal liver LO2 cells but notably reduced the migratory and invasive capacities of TGF-ß1-treated HCC cells. Additionally, isoviolanthin treatment decreased matrix metalloproteinase (MMP)-2 and -9 levels, and remarkably altered the expression of EMT markers via regulating the TGF-ß/Smad and PI3K/Akt/mTOR signaling pathways; Western blot analysis confirmed that the effects of the inhibitors SB431542 and LY294002 were consistent with those of isoviolanthin. These findings demonstrate the potential of isoviolanthin as a therapeutic agent for the treatment of advanced-stage metastatic HCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/patología , Dendrobium/química , Transición Epitelial-Mesenquimal , Flavonoides/farmacología , Neoplasias Hepáticas/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Humanos , Neoplasias Hepáticas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Biológicos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Smad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
Molecules ; 23(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262777

RESUMEN

Dendrobium officinale is a widely used medicinal plant in China with numerous bio-activities. However, the main structure and anti-tumor activity of the polysaccharides from this plant have not been investigated. In this study, we elucidated the main structure of polysaccharides purified with DEAE and Sephadex G-25 from Dendrobium officinale grown under different planting conditions. In addition, the anti-tumor activity was tested via MTT assays. The results showed that the polysaccharides of Dendrobium officinale grown under different conditions were almost the same, with slight differences in the branched chain; both polysaccharide fractions consisted of (1→4)-linked mannose and (1→4)-linked glucose, with an O-acetyl group in the mannose. After degradation, the polysaccharide fractions from wild plants showed significant anti-proliferation activity in HeLa cells. The fractions F1 and F3 induced apoptosis by up-regulating the expression of ERK, JNK, and p38. We concluded that polysaccharides from Dendrobium officinale planted in the wild exhibit significant anti-tumor effects only after being degraded to smaller molecular weight species. The planting mode is a significant factor in the pharmacological activity of Dendrobium officinale. We advise that the planting conditions for Dendrobium officinale should be changed.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dendrobium/química , Polisacáridos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Dendrobium/crecimiento & desarrollo , Células HeLa , Humanos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología
9.
J Cancer ; 15(10): 3151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706906

RESUMEN

[This retracts the article DOI: 10.7150/jca.83985.].

10.
J Cancer ; 15(2): 356-369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169517

RESUMEN

Colorectal cancer (CRC) is a common malignant tumor worldwide. Capsaicin and cold exposure were positively correlated with CRC metastasis. However, the mechanisms of action underlying capsaicin and cold exposure in 1,2-dimethylhyrazine (DMH)-induced CRC remain unknown. Multiple assays were utilized in the present study, including methylene blue, hematoxylin eosin (H&E) and immunohistochemistry (IHC) staining, western blotting and Duolink proximity ligation assay (PLA), in order to assess the influence of capsaicin and cold exposure on CRC rat models induced by DMH. The present study reported that capsaicin and cold exposure treatment significantly increased the size and number of colonic tumors, and the CRC metastasis rate in the capsaicin and cold exposure groups was higher than that in DMH model group.Moreover, it was observed that capsaicin and cold exposure increased mRNA and protein expression levels of LAMC2 and integrin-ß1 induced by DMH. Duolink PLA results indicated that cold exposure and capsaicin significantly promoted interaction formation between LAMC2 and ITGB1 in CRC rats induced by DMH. Furthermore, western blot and IHC analysis confirmed that cold exposure and capsaicin inhibited DMH-induced decreases in the expression levels of E-cadherin, and increases in the expression levels of p-FAK, Snails, Fibronectin and N-cadherin. In addition, the serum levels of IL-1ß and IL-6 in capsaicin and cold exposure group were higher than those of model group. In conclusion, our study suggests that both capsaicin and cold exposure may contribute to EMT-mediated the formation of premetastatic niche, which may lead to CRC metastasis by activating the early interaction between LAMC2 and integrin-ß1.

11.
Biomed Pharmacother ; 175: 116736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739992

RESUMEN

AIMS: The xanthone dimer 12-O-deacetyl-phomoxanthone A (12-ODPXA) was extracted from the secondary metabolites of the endophytic fungus Diaporthe goulteri. The 12-ODPXA compound exhibited anticancer properties in murine lymphoma; however, the anti-ovarian cancer (OC) mechanism has not yet been explored. Therefore, the present study evaluated whether 12-ODPXA reduces OC cell proliferation, metastasis, and invasion by downregulating pyruvate dehydrogenase kinase (PDK)4 expression. METHODS: Cell counting kit-8, colony formation, flow cytometry, wound healing, and transwell assays were performed to examine the effects of 12-ODPXA on OC cell proliferation, apoptosis, migration, and invasion. Transcriptome analysis was used to predict the changes in gene expression. Protein expression was determined using western blotting. Glucose, lactate, and adenosine triphosphate (ATP) test kits were used to measure glucose consumption and lactate and ATP production, respectively. Zebrafish xenograft models were constructed to elucidate the anti-OC effects of 12-ODPXA. RESULTS: The 12-ODPXA compound inhibited OC cell proliferation, migration, invasion, and glycolysis while inducing cell apoptosis via downregulation of PDK4. In vivo experiments showed that 12-ODPXA suppressed tumor growth and migration in zebrafish. CONCLUSION: Our data demonstrate that 12-ODPXA inhibits ovarian tumor growth and metastasis by downregulating PDK4, revealing the underlying mechanisms of action of 12-ODPXA in OC.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Neoplasias Ováricas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Xantonas , Pez Cebra , Animales , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Humanos , Xantonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metástasis de la Neoplasia , Invasividad Neoplásica
12.
Pathol Oncol Res ; 28: 1610754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419650

RESUMEN

Background: KIAA1199 has been considered a key regulator of carcinogenesis. However, the relationship between KIAA1199 and immune infiltrates, as well as its prognostic value in lung adenocarcinoma (LUAD) remains unclear. Methods: The expression of KIAA1199 and its influence on tumor prognosis were analyzed using a series of databases, comprising TIMER, GEPIA, UALCAN, LCE, Prognoscan and Kaplan-Meier Plotter. Further, immunohistochemistry (IHC), western blot (WB) and receiver operating characteristic (ROC) curve analyses were performed to verify our findings. The cBioPortal was used to investigate the genomic alterations of KIAA1199. Prediction of candidate microRNA (miRNAs) and transcription factor (TF) targeting KIAA1199, as well as GO and KEGG analyses, were performed based on LinkedOmics. TIMER and TISIDB databases were used to explore the relationship between KIAA1199 and tumor immune infiltration. Results: High expression of KIAA1199 was identified in LUAD and Lung squamous cell carcinoma (LUSC) patients. High expression of KIAA1199 indicated a worse prognosis in LUAD patients. The results of IHC and WB analyses showed that the expression level of KIAA1199 in tumor tissues was higher than that in adjacent tissues. GO and KEGG analyses indicated KIAA1199 was mainly involved in extracellular matrix (ECM)-receptor interaction and extracellular matrix structure constituent. KIAA1199 was positively correlated with infiltrating levels of CD4+ T cells, macrophages, neutrophil cells, dendritic cells, and showed positive relationship with immune marker subsets expression of a variety of immunosuppressive cells. Conclusion: High expression of KIAA1199 predicts a poor prognosis of LUAD patients. KIAA1199 might exert its carcinogenic role in the tumor microenvironment via participating in the extracellular matrix formation and regulating the infiltration of immune cells in LUAD. The results indicate that KIAA1199 might be a novel biomarker for evaluating prognosis and immune cell infiltration in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Carcinogénesis , Pronóstico , Microambiente Tumoral
13.
World J Gastroenterol ; 28(35): 5154-5174, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36188720

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a common malignant tumor. Alcohol consumption is positively correlated with CRC malignant metastasis; however, the mechanism is unclear. The interaction between laminin-γ2 (LAMC2) and integrin-ß1 (ITGB1) plays a role in premetastatic niche signaling, which may induce epithelial mesenchymal transformation (EMT) and lead to metastasis. AIM: To investigate the effects of alcohol on CRC metastasis from the molecular mechanism of the premetastatic niche. METHODS: The interaction between LAMC2 and ITGB1 was measured by Duolink assay, and the expression levels of LAMC2, ITGB1 and focal adhesion kinase (FAK), snail, fibronectin, N-cadherin and special AT-rich sequence binding protein 1 (SATB1) were measured by quantitative real-time polymerase chain reaction, immunohistochemistry and western blotting. Interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and IL-6 levels were measured via enzyme-linked immunosorbent assay, histopathological assessment via hematoxylin eosin staining, and determination of aberrant crypt foci via methylene blue. RESULTS: The lymph node metastasis rate was higher in the alcohol group than non-alcohol group. There was a significant increase in interaction signals between LAMC2 and ITGB1, and an increase in phosphorylate-FAK/FAK, snail, fibronectin, N-cadherin and SATB1, whereas E-cadherin was reduced in the alcohol group compared to the non-alcohol group in both animal and clinical samples. Serum IL-1ß, TNF-α and IL-6 were higher in alcohol group than in non-alcohol group. Alcohol may promote CRC metastasis by influencing the molecular mechanism of the premetastatic niche. CONCLUSION: Our study suggests that alcohol promotes EMT-mediated premetastatic niche formation of CRC by activating the early interaction between LAMC2 and ITGB1 and lead to CRC metastasis.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Unión a la Región de Fijación a la Matriz , Animales , Cadherinas , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/patología , Eosina Amarillenta-(YS)/farmacología , Transición Epitelial-Mesenquimal , Fibronectinas/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Hematoxilina/farmacología , Integrina beta1/metabolismo , Integrina beta1/farmacología , Interleucina-1beta , Interleucina-6 , Laminina , Azul de Metileno , Factor de Necrosis Tumoral alfa/farmacología
14.
Biomed Res Int ; 2021: 5565748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095301

RESUMEN

Gentiopicroside (GPS), a main active secoiridoid glucoside derived from the roots of perennial herbs in the Gentianaceae family, has antispasmodic and relaxant effects. However, the vasorelaxant effects of GPS on aortic rings and the molecular mechanisms involved in these effects are not yet clear. Therefore, we investigated whether GPS inhibits phenylephrine- (PE-) or KCl-induced contractions in isolated rat thoracic aortic rings. The present study found that GPS produced a dose-dependent relaxation in aortic rings precontracted with PE or KCl and significantly reduced CaCl2-, narciclasine- (Rho-kinase activator-), and phorbol-12,13-diacetate- (PKC activator-) induced vasocontractions. Pretreatment with NG-Nitroarginine methyl ester hydrochloride (L-NAME, NOS inhibitor), methylene blue (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV channel inhibitor), and glibenclamide (KATP channel inhibitor) had no influence on the vasorelaxant effect of GPS, while BaCl2 (Kir channel inhibitor), tetraethylammonium chloride (KCa channel inhibitor), ruthenium red (RYR inhibitor), and heparin (IP3R inhibitor) significantly reduced GPS-induced vasorelaxation. Moreover, GPS pretreatment remarkably inhibited the influx of Ca2+ in vascular smooth muscle cells stimulated using KCl or PE-containing CaCl2 solution. Western blot analysis confirmed that GPS treatment inhibited PE-induced increases in the protein levels of p-Akt, p-myosin light chain (MLC), and p-myosin-binding subunit of myosin phosphatase 1 (MYPT1) in the aortic rings. Additionally, the vasorelaxation activity of GPS was attenuated upon pretreatment with LY294002 (PI3K/Akt inhibitor), Y27632 (Rho-kinase inhibitor), and verapamil (L-type Ca2+ channel inhibitor). These findings demonstrate that GPS exhibits endothelium-independent vasorelaxant effects through inhibition of voltage-dependent, receptor-operated, and inositol triphosphate receptor (IP3R)/ryanodine receptor- (RYR-) mediated Ca2+ channels as well as the PI3K/Akt/Rho-kinase signaling pathway.


Asunto(s)
Aorta Torácica/metabolismo , Glucósidos Iridoides/farmacología , Vasodilatación/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , China , Endotelio Vascular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Glucósidos Iridoides/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Fenilefrina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Cloruro de Potasio/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/fisiología , Vasodilatación/fisiología , Vasodilatadores/farmacología , Quinasas Asociadas a rho/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-34335820

RESUMEN

Colorectal cancer (CRC) is a common malignant tumor around the world. Studying the unique constitution of CRC patients is conducive to the application of personalized medical treatment for CRC. The most common types of constitution in CRC are cold and heat constitution. A previous study has suggested that the malignant progression in cold and heat constitution CRC are different; however, the mechanism remains unclear. The tumor microenvironment (TME) is likely to vary with each individual constitution, which may affect the tumor growth in different constitutions. The extracellular matrix (ECM), the most important component of TME, plays a critical role in disease progression and outcome in patients with CRC. Moreover, collagen, the major component of the ECM, determines the main functional characteristics of ECM and tissue fibrosis caused by collagen deposition, which is one of the signs of CRC malignant progression. This study aimed to explore the mechanisms leading to different colorectal carcinogenesis paradigms between the cold constitution and heat constitution within the context of ECM collagen deposition. We established the CRC rat models and enrolled 30 CRC patients with cold and heat constitution. The collagen-related parameters were detected by using Sirius red staining combined with polarized light microscope, and expressions of collagen (COL I and COL III) and lysyl oxidase (LOX and LOXL2) were determined using immunohistochemistry, while the mRNA levels of COL1A1, COL3A1, LOX, and LOXL2 were measured by qRT-PCR. We found that a higher degree of collagen deposition in the cold-constitution group. The results suggest cold and heat constitution may affect the colorectal carcinogenesis paradigm by influencing the early collagen deposition in colon tissue. The study may provide an effective idea for clinicians to improve the prognosis of CRC patients with different constitutions.

16.
Life Sci ; 274: 119354, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33737087

RESUMEN

AIMS: Gigantol is a bibenzyl compound isolated from orchids of the genus Dendrobium. Gigantol has been demonstrated to possess various pharmacologic (including anticancer) effects. Cisplatin (DDP) has been used and studied as the first-line agent for breast cancer (BC) treatment. Often, its efficacy is jeopardized due to intolerance and organ toxicity. We investigated if gigantol could enhance the anticancer effects of DDP in BC cells and its underlying mechanism of action. MAIN METHODS: The potential pathway of gigantol in BC cells was detected by network-pharmacology and molecular-docking studies. The proliferation and apoptosis of BC cell lines were measured by the MTT assay, colony formation, Hoechst-33342 staining, and flow cytometry. Protein expression was measured by western blotting. KEY FINDINGS: Gigantol could inhibit proliferation of BC cells and enhance DDP-induced apoptosis. According to the results of western blotting, gigantol reinforced DDP-induced anticancer effects through downregulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in BC cells. The effects were consistent with those of the pathway inhibitor LY294002. SIGNIFICANCE: Our data might provide new insights into the underlying antitumor effect of gigantol in BC cells. This enhancement effect in the combination of gigantol and DDP may provide many therapeutic benefits in clinical treatment regimens against BC.


Asunto(s)
Bibencilos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/farmacología , Sinergismo Farmacológico , Guayacol/análogos & derivados , Fosfatidilinositol 3-Quinasas/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Guayacol/farmacología , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Tumorales Cultivadas
17.
Biomed Res Int ; 2020: 6512895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32420359

RESUMEN

Anthocyanins, a group of flavonoids, are widely present in plants and determine the colors of the peels of stems, fruits, and flowers. In this study, we used UHPLC-ESI-MS to identify anthocyanins in the herbal plant Dendrobium officinale, which has been used for centuries in China. The results indicated that the total anthocyanin content in samples from Guangxi was the highest. Seven anthocyanins were identified, and the fragmentation pathways were proposed from D. officinale. Most of the identified anthocyanins were composed of cyanidin and sinapoyl groups. We also carried out that the sinapoyl group had active sites on breast cancer receptors by using Schrödinger. The relative levels of the 7 anthocyanins in the samples from the three locations were determined. Transcriptomic analysis was used to analyze the sinapoyl anthocyanin synthesis-related genes in plants, such as genes encoding UGTs and serine carboxypeptidase. We speculated that sinapoyl anthocyanin biosynthesis was associated with the activities of certain enzymes, including chalcone flavonone isomerase-like, hydroxycinnamoyltransferase 1, UGT-83A1, UGT-88B1 isoform X1, serine carboxypeptidase-like 18 isoform X3, and serine carboxypeptidase-like 18.


Asunto(s)
Antocianinas , Dendrobium , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Antocianinas/biosíntesis , Antocianinas/genética , Cromatografía Liquida , Dendrobium/genética , Dendrobium/metabolismo , Espectrometría de Masas
18.
Oncol Lett ; 18(6): 6554-6562, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31807174

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is an essential phenotypic conversion involved in cancer progression. Epidermal growth factor (EGF) and transforming growth factor (TGF)-ß1 are potent inducers of the EMT. Tanshinone IIA (Tan IIA) is a phenanthrenequinone extracted from the root of Salvia miltiorrhiza Bunge, and its anticancer activity has been demonstrated in numerous studies. However, the mechanisms of action underlying Tan IIA in EGF- and TGF-ß1-induced EMT in HepG2 cells remain unknown. Multiple assays were utilized in the present study, including colony formation, wound healing, Transwell invasion, immunofluorescence staining and western blotting, in order to assess the influence of Tan IIA on HepG2 cells induced by 20 ng/ml EGF and 10 ng/ml TGF-ß1. The present study reported that Tan IIA treatment decreased EGF- and TGF-ß1-enhanced cell colony numbers, migration and invasion, and inhibited EGF- and TGF-ß1-induced decreases in the expression levels of E-cadherin, and increases in the expression levels of matrix metalloproteinase-2, N-cadherin, vimentin and Snail. In addition, it was observed that Tan IIA decreased the expression levels of phosphorylated (p)-Akt and p-ERK1/2 induced by EGF and TGF-ß1. Furthermore, western blot analysis confirmed that blocking the function of PI3K/Akt and ERK with LY294002 and U0126 resulted in upregulation of E-cadherin expression, and downregulation of vimentin and Snail expression in EGF- and TGF-ß1-treated HepG2 cells. In conclusion, to the best of our knowledge, the results of the present study are the first to indicate that Tan IIA may suppress EGF- and TGF-ß1-induced EMT in HepG2 cells by deactivating the PI3K/Akt/ERK pathway.

19.
Sci Rep ; 9(1): 7737, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123286

RESUMEN

Systemic or local inflammation drives the pathogenesis of various human diseases. Small compounds with anti-inflammatory properties hold great potential for clinical translation. Over recent decades, many compounds have been screened for their action against inflammation-related targets. Databases that integrate the physicochemical properties and bioassay results of these compounds are lacking. We created an "Anti-Inflammatory Compounds Database" (AICD) to deposit compounds with potential anti-inflammation activities. A total of 232 inflammation-related targets were recruited by the AICD. Gene set enrichment analysis showed that these targets were involved in various human diseases. Bioassays of these targets were collected from open-access databases and adopted to extract 79,781 small molecules with information on chemical properties, candidate targets, bioassay models and bioassay results. Principal component analysis demonstrated that these deposited compounds were closely related to US Food and Drug Administration-approved drugs with respect to chemical space and chemical properties. Finally, pathway-based screening for drug combination/multi-target drugs provided a case study for drug discovery using the AICD. The AICD focuses on inflammation-related drug targets and contains substantial candidate compounds with high chemical diversity and good drug-like properties. It could be serviced for the discovery of anti-inflammatory medicines and can be accessed freely at http://956023.ichengyun.net/AICD/index.php .


Asunto(s)
Antiinflamatorios/clasificación , Descubrimiento de Drogas/métodos , Inflamación/tratamiento farmacológico , Productos Biológicos/química , Bases de Datos Factuales , Bases de Datos Farmacéuticas , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Humanos
20.
Chem Cent J ; 12(1): 103, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30328010

RESUMEN

The original version of the article [1] contained a mistake. The Figure legends are right, but the pictures in Figs. 3 and 4 are contrary. The corrected figures are given below.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA