Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.059
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 626(8000): 779-784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383626

RESUMEN

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

2.
Nature ; 626(7997): 79-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172640

RESUMEN

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

3.
Nature ; 627(8005): 783-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538937

RESUMEN

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

4.
Nature ; 607(7919): 486-491, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794481

RESUMEN

Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms1-3, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite-diamond interfaces during the transformation4,5. Here we report the identification of coherent graphite-diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed1-3. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.

5.
Plant Cell ; 36(9): 3824-3837, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39041486

RESUMEN

Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia , Proteínas de Plantas , Marchantia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Células Germinativas de las Plantas/metabolismo , Arabidopsis/genética , Plantas Modificadas Genéticamente
6.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536757

RESUMEN

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Asunto(s)
Arbovirus , Hemípteros , Oryza , Tenuivirus , Animales , Arbovirus/genética , Hemípteros/fisiología , Tenuivirus/fisiología , Insectos Vectores , Antivirales/metabolismo , Oryza/genética , Enfermedades de las Plantas
7.
Nature ; 582(7812): 370-374, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555490

RESUMEN

The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies1,2, among which the formation of high-density nanoscale twins - crystalline regions related by symmetry - also toughens diamond2. In materials other than diamond, there are several other promising approaches to enhancing toughness in addition to nanotwinning3, such as bio-inspired laminated composite toughening4-7, transformation toughening8 and dual-phase toughening9, but there has been little research into such approaches in diamond. Here we report the structural characterization of a diamond composite hierarchically assembled with coherently interfaced diamond polytypes (different stacking sequences), interwoven nanotwins and interlocked nanograins. The architecture of the composite enhances toughness more than nanotwinning alone, without sacrificing hardness. Single-edge notched beam tests yield a toughness up to five times that of synthetic diamond10, even greater than that of magnesium alloys. When fracture occurs, a crack propagates through diamond nanotwins of the 3C (cubic) polytype along {111} planes, via a zigzag path. As the crack encounters regions of non-3C polytypes, its propagation is diffused into sinuous fractures, with local transformation into 3C diamond near the fracture surfaces. Both processes dissipate strain energy, thereby enhancing toughness. This work could prove useful in making superhard materials and engineering ceramics. By using structural architecture with synergetic effects of hardening and toughening, the trade-off between hardness and toughness may eventually be surmounted.

8.
Hum Mol Genet ; 32(14): 2307-2317, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37070736

RESUMEN

Several different mutations in the proteome of centriole 1 centriolar protein B (POC1B) have been linked to cone dystrophy or cone-rod dystrophy (CORD). However, mutations in POC1B that are associated with both CORD and oligoasthenoteratozoospermia (OAT) have not been reported previously. Here, whole-exome sequencing was performed to identify a homozygous frameshift variant (c.151delG) in POC1B in the two brothers who had been diagnosed with both CORD and OAT from a consanguineous family. Transcript and protein analyses of biological samples from the two patients carrying the variant showed that POC1B protein is lost in sperm cells. The system CRISPR/Cas9 was utilized to create poc1bc.151delG/c.151delG knock-in (KI) mice. Notably, poc1bc.151delG/c.151delG KI male mice presented with OAT phenotype. Additionally, testicular histology and transmission electron microscopy analysis of the testes and sperm indicated that Poc1b mutation results in abnormal formation of acrosomes and flagella. Collectively, according to our experimental data on human volunteers and animal models, biallelic mutations in POC1B can cause OAT and CORD in mice and humans.


Asunto(s)
Astenozoospermia , Distrofias de Conos y Bastones , Infertilidad Masculina , Oligospermia , Humanos , Masculino , Animales , Ratones , Oligospermia/genética , Infertilidad Masculina/genética , Astenozoospermia/genética , Semen/metabolismo , Mutación , Proteínas de Ciclo Celular/genética
9.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37328705

RESUMEN

Binding free energy calculation of a ligand to a protein receptor is a fundamental objective in drug discovery. Molecular mechanics/Generalized-Born (Poisson-Boltzmann) surface area (MM/GB(PB)SA) is one of the most popular methods for binding free energy calculations. It is more accurate than most scoring functions and more computationally efficient than alchemical free energy methods. Several open-source tools for performing MM/GB(PB)SA calculations have been developed, but they have limitations and high entry barriers to users. Here, we introduce Uni-GBSA, a user-friendly automatic workflow to perform MM/GB(PB)SA calculations, which can perform topology preparation, structure optimization, binding free energy calculation and parameter scanning for MM/GB(PB)SA calculations. It also offers a batch mode that evaluates thousands of molecules against one protein target in parallel for efficient application in virtual screening. The default parameters are selected after systematic testing on the PDBBind-2011 refined dataset. In our case studies, Uni-GBSA produced a satisfactory correlation with the experimental binding affinities and outperformed AutoDock Vina in molecular enrichment. Uni-GBSA is available as an open-source package at https://github.com/dptech-corp/Uni-GBSA. It can also be accessed for virtual screening from the Hermite web platform at https://hermite.dp.tech. A free Uni-GBSA web server of a lab version is available at https://labs.dp.tech/projects/uni-gbsa/. This increases user-friendliness because the web server frees users from package installations and provides users with validated workflows for input data and parameter settings, cloud computing resources for efficient job completions, a user-friendly interface and professional support and maintenance.


Asunto(s)
Descubrimiento de Drogas , Simulación de Dinámica Molecular , Flujo de Trabajo , Entropía , Ligandos , Internet , Unión Proteica
10.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37170752

RESUMEN

Haplotype networks are graphs used to represent evolutionary relationships between a set of taxa and are characterized by intuitiveness in analyzing genealogical relationships of closely related genomes. We here propose a novel algorithm termed McAN that considers mutation spectrum history (mutations in ancestry haplotype should be contained in descendant haplotype), node size (corresponding to sample count for a given node) and sampling time when constructing haplotype network. We show that McAN is two orders of magnitude faster than state-of-the-art algorithms without losing accuracy, making it suitable for analysis of a large number of sequences. Based on our algorithm, we developed an online web server and offline tool for haplotype network construction, community lineage determination, and interactive network visualization. We demonstrate that McAN is highly suitable for analyzing and visualizing massive genomic data and is helpful to enhance the understanding of genome evolution. Availability: Source code is written in C/C++ and available at https://github.com/Theory-Lun/McAN and https://ngdc.cncb.ac.cn/biocode/tools/BT007301 under the MIT license. Web server is available at https://ngdc.cncb.ac.cn/bit/hapnet/. SARS-CoV-2 dataset are available at https://ngdc.cncb.ac.cn/ncov/. Contact: songshh@big.ac.cn (Song S), zhaowm@big.ac.cn (Zhao W), baoym@big.ac.cn (Bao Y), zhangzhang@big.ac.cn (Zhang Z), ybxue@big.ac.cn (Xue Y).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Haplotipos , SARS-CoV-2/genética , COVID-19/genética , Algoritmos , Genómica , Programas Informáticos
11.
Stem Cells ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283761

RESUMEN

A general decline in the osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMSCs) in the elderly is a clinical consensus, with diverse opinions on the mechanisms. Many studies have demonstrated that metformin (MF) significantly protects against osteoporosis and reduces fracture risk. However, the exact mechanism of this effect remains unclear. In this study, we found that the decreased miR-181a-5p expression triggered by MF treatment plays a critical role in recovering the osteogenic ability of aging hBMSCs (derived from elderly individuals). Notably, the miR-181a-5p expression in hBMSCs was significantly decreased with prolonged MF (1000 µM) treatment. Further investigation revealed that miR-181a-5p overexpression markedly impairs the osteogenic ability of hBMSCs, while miR-181a-5p inhibition reveals the opposite result. We also found that miR-181a-5p could suppress the protein translation process of plasminogen activator inhibitor-1 (PAI-1), as evidenced by luciferase assays and western blots. Additionally, low PAI-1 levels were associated with diminished osteogenic ability, whereas high levels promoted it. These findings were further validated in human umbilical cord mesenchymal stem cells (hUCMSCs). Finally, our in vivo experiment with a bone defects rat model confirmed that the agomiR-181a-5p (long-lasting miR-181a-5p mimic) undermined bone defects recovery, while the antagomiR-181a-5p (long-lasting miR-181a-5p inhibitor) significantly promoted the bone defects recovery. In conclusion, we found that MF promotes bone tissue regeneration through the miR-181a-5p/PAI-1 axis by affecting MSC osteogenic ability, providing new strategies for the treatment of age-related bone regeneration disorders.

12.
EMBO Rep ; 24(2): e55778, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36440627

RESUMEN

Following meiotic recombination, each pair of homologous chromosomes acquires at least one crossover, which ensures accurate chromosome segregation and allows reciprocal exchange of genetic information. Recombination failure often leads to meiotic arrest, impairing fertility, but the molecular basis of recombination remains elusive. Here, we report a homozygous M1AP splicing mutation (c.1074 + 2T > C) in patients with severe oligozoospermia owing to meiotic metaphase I arrest. The mutation abolishes M1AP foci on the chromosome axes, resulting in decreased recombination intermediates and crossovers in male mouse models. M1AP interacts with the mammalian ZZS (an acronym for yeast proteins Zip2-Zip4-Spo16) complex components, SHOC1, TEX11, and SPO16. M1AP localizes to chromosomal axes in a SPO16-dependent manner and colocalizes with TEX11. Ablation of M1AP does not alter SHOC1 localization but reduces the recruitment of TEX11 to recombination intermediates. M1AP shows cytoplasmic localization in fetal oocytes and is dispensable for fertility and crossover formation in female mice. Our study provides the first evidence that M1AP acts as a copartner of the ZZS complex to promote crossover formation and meiotic progression in males.


Asunto(s)
Meiosis , Complejos Multiproteicos , Animales , Femenino , Masculino , Ratones , Meiosis/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos Multiproteicos/metabolismo
13.
Nature ; 570(7761): 358-362, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31217599

RESUMEN

The ability to manipulate the twisting topology of van der Waals structures offers a new degree of freedom through which to tailor their electrical and optical properties. The twist angle strongly affects the electronic states, excitons and phonons of the twisted structures through interlayer coupling, giving rise to exotic optical, electric and spintronic behaviours1-5. In twisted bilayer graphene, at certain twist angles, long-range periodicity associated with moiré patterns introduces flat electronic bands and highly localized electronic states, resulting in Mott insulating behaviour and superconductivity3,4. Theoretical studies suggest that these twist-induced phenomena are common to layered materials such as transition-metal dichalcogenides and black phosphorus6,7. Twisted van der Waals structures are usually created using a transfer-stacking method, but this method cannot be used for materials with relatively strong interlayer binding. Facile bottom-up growth methods could provide an alternative means to create twisted van der Waals structures. Here we demonstrate that the Eshelby twist, which is associated with a screw dislocation (a chiral topological defect), can drive the formation of such structures on scales ranging from the nanoscale to the mesoscale. In the synthesis, axial screw dislocations are first introduced into nanowires growing along the stacking direction, yielding van der Waals nanostructures with continuous twisting in which the total twist rates are defined by the radii of the nanowires. Further radial growth of those twisted nanowires that are attached to the substrate leads to an increase in elastic energy, as the total twist rate is fixed by the substrate. The stored elastic energy can be reduced by accommodating the fixed twist rate in a series of discrete jumps. This yields mesoscale twisting structures consisting of a helical assembly of nanoplates demarcated by atomically sharp interfaces with a range of twist angles. We further show that the twisting topology can be tailored by controlling the radial size of the structure.

15.
Nucleic Acids Res ; 51(5): 2066-2086, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36762470

RESUMEN

Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Transponibles de ADN/genética , Cromosomas , Secuencia de Bases , Epigénesis Genética
16.
Proc Natl Acad Sci U S A ; 119(40): e2206990119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161913

RESUMEN

Rapid detection of pathogenic bacteria within a few minutes is the key to control infectious disease. However, rapid detection of pathogenic bacteria in clinical samples is quite a challenging task due to the complex matrix, as well as the low abundance of bacteria in real samples. Herein, we employ a label-free single-particle imaging approach to address this challenge. By tracking the scattering intensity variation of single particles in free solution, the morphological heterogeneity can be well identified with particle size smaller than the diffraction limit, facilitating the morphological identification of single bacteria from a complex matrix in a label-free manner. Furthermore, the manipulation of convection in free solution enables the rapid screening of low-abundance bacteria in a small field of view, which significantly improves the sensitivity of single-particle detection. As a proof of concept demonstration, we are able to differentiate the group B streptococci (GBS)-positive samples within 10 min from vaginal swabs without using any biological reagents. This is the most rapid and low-cost method to the best of our knowledge. We believe that such a single-particle imaging approach will find wider applications in clinical diagnosis and disease control due to its high sensitivity, rapidity, simplicity, and low cost.


Asunto(s)
Bacterias , Enfermedades Transmisibles , Análisis de la Célula Individual , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Enfermedades Transmisibles/diagnóstico por imagen , Femenino , Humanos , Tamaño de la Partícula , Análisis de la Célula Individual/métodos , Frotis Vaginal
17.
J Neurosci ; 43(5): 803-811, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564185

RESUMEN

Anxiety is one of the most common withdrawal symptoms of methamphetamine (METH) abuse, which further drives relapse to drugs. Interpeduncular nucleus (IPN) has been implicated in anxiety-like behaviors and addiction, yet its role in METH-abstinence-induced anxiety remains unknown. Here, we found that prolonged abstinence from METH enhanced anxiety-like behaviors in male mice, accompanied by more excited IPN GABAergic neurons, as indicated by the increased c-fos expression and the enhanced neuronal excitability by electrophysiological recording in the GABAergic neurons. Using the designer receptors exclusively activated by designer drugs method, specific inhibition of IPN GABAergic neurons rescued the aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduced anxiety-like behaviors, whereas it did not induce depression-like behaviors in male mice after prolonged abstinence from METH. These findings reveal that IPN GABAergic neurons should be a promising brain target to alleviate late withdrawal symptoms from METH with few side effects.SIGNIFICANCE STATEMENT Prolonged abstinence from METH triggers IPN GABAergic neurons and ultimately increases anxiety in male mice. Suppressing IPN GABAergic neurons rescues METH abstinence-induced aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduces anxiety in mice.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Núcleo Interpeduncular , Metanfetamina , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Animales , Metanfetamina/farmacología , Núcleo Interpeduncular/metabolismo , Ansiedad/metabolismo , Neuronas GABAérgicas/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismo
18.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583797

RESUMEN

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Asunto(s)
Proteína HMGB1 , Hiperplasia , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteínas del Factor Nuclear 90 , Estabilidad del ARN , Factor de Transcripción STAT3 , Túnica Íntima , Animales , Humanos , Masculino , Ratones , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patología , Proteínas del Factor Nuclear 90/metabolismo , Proteínas del Factor Nuclear 90/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología
19.
J Am Chem Soc ; 146(31): 21250-21256, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052841

RESUMEN

Herein, we report concise total syntheses of diterpene natural products (-)-crinipellins A and B with a tetraquinane skeleton, three adjacent all-carbon quaternary centers, and multiple oxygenated and labile functional groups. Our synthesis features a convergent Kozikowski ß-alkylation to unite two readily available building blocks with all the required carbon atoms, an intramolecular photochemical [2 + 2] cycloaddition to install three challenging and adjacent all-carbon quaternary centers and a 5-6-4-5 tetracyclic skeleton, and a controlled Cargill rearrangement to rearrange the 5-6-4-5 tetracyclic skeleton to the desired tetraquinane skeleton. These strategically enabling transformations allowed us to complete total syntheses of (-)-crinipellins A and B in 12 and 13 steps, respectively. The results of quantum chemical computations revealed that the Bronsted acid-catalyzed Cargill rearrangements likely involve stepwise paths to products and the AlR3-catalyzed Cargill rearrangements likely involve a concerted path with asynchronous alkyl shifting events to form the desired product.


Asunto(s)
Diterpenos , Diterpenos/síntesis química , Diterpenos/química , Estereoisomerismo , Productos Biológicos/síntesis química , Productos Biológicos/química , Estructura Molecular , Reacción de Cicloadición , Alquilación
20.
J Am Chem Soc ; 146(32): 22374-22386, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39028984

RESUMEN

Sodium-ion layered oxides are one of the most highly regarded sodium-ion cathode materials and are expected to be used in electric vehicles and large-scale grid-level energy storage systems. However, highly air-sensitive issues limit sodium-ion layered oxide cathode materials to maximize cost advantages. Industrial and scientific researchers have been developing cost-effective air sensitivity treatment strategies with little success because the impurity formation mechanism is still unclear. Using density functional theory calculations and ab initio molecular dynamics simulations, this work shows that the poor air stability of O3-type NaMn1/3Fe1/3Ni1/3O2 (NMFNO) may be as follows: (1) low percentage of nonreactive (003) surface; (2) strong surface adsorption capacity and high surface reactivity; and (3) instability of the surface sodium ions. Our physical images point out that the high reactivity of the NMFNO surface originates from the increase in electron loss and unpaired electrons (magnetic moments) of the surface oxygen active site as well as the enhanced metal coactivation effect due to the large radius of the sodium ion. We also found that the hydrolysis reaction requires a higher reactivity of the surface oxygen active site, while the carbon hybridization mode transformation in carbonate formation depends mainly on metal activation and does not even require the involvement of surface oxygen active sites. Based on the calculation results and our proposed physical images, we discuss the feasibility of these treatment strategies (including surface morphology modulation, cation/anion substitution, and surface configuration design) for air-sensitive issues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA