RESUMEN
The effect of a hydrogen bond on the photochemical synthesis of silver nanoparticles has been investigated via experimental and theoretical methods. In a benzophenone system, the photochemical synthesis process includes two steps, which are that hydrogen abstraction reaction and the following reduction reaction. We found that for the first step, an intermolecular hydrogen bond enhances the proton transfer. The efficiency of hydrogen abstraction increases with the hydrogen bond strength. For the second step, the hydrogen-bonded ketyl radical complex shows higher reducibility than the ketyl radical. The inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurement exhibits a 2.49 times higher yield of silver nanoparticles in the hydrogen bond ketyl radical complex system than that for the ketyl radical system. Theoretical calculations show that the hydrogen bond accelerates electron transfer from the ketyl radical to the silver ion by raising the SOMO energy of the ketyl radical; thus, the SOMO-LUMO interaction is more favorable.
RESUMEN
Purpose: To characterize the cytokine profile of patients with severe fever with thrombocytopenia syndrome (SFTS) in relation to disease severity. Patients and Methods: 60 laboratory-confirmed SFTS patients and 12 healthy individuals from multi-centers in Shandong Province of China were included, and all patients were divided into fatal patients (9) and recovered patients (51) due to their final outcomes. Multiplex-microbead immunoassays were conducted to estimate levels of 27 cytokines in the sera of patients and controls. Results: The results showed that levels of IL-2, IL-4, IL-6, IL-7, IL-8, IL-15, IL-1RA, G-CSF, GM-CSF, IFN-γ, TNF-α, basic FGF, PDGF-BB, RANTES, IP-10, MIP-1α, MIP-1ß, MCP-1, and Eotaxin differed significantly among the SFTS fatal patients, recovered patients, and the healthy controls (all p<0.05). Compared to the healthy controls, the fatal patients and recovered patients had reduced levels of IL-2, IL-4, IL-7, PDGF-BB, RANTES, and Eotaxin, while the levels of PDGF-BB and RANTES were significantly lower in fatal patients compared to recovered patients. The increasing levels of IL-6, IL-8, IL-15, IL-1RA, G-CSF, GM-CSF, IFN-γ, TNF-α, basic FGF, IP-10, MIP-1α, MIP-1ß, and MCP-1 were observed in fatal patients (all p<0.05), and the levels of IL-6, IP-10, MIP-1α, and MCP-1 were significantly higher than other two groups. The Spearman correlation analysis indicated a positive correlation between platelet count and PDGF-BB levels (p<0.05), while the white blood cell count had a negative correlation with MIP-1 level (p<0.05). Conclusion: The research exhibited that the SFTS virus (SFTSV) caused an atypical manifestation of cytokines. The levels of IL-6, IP-10, MIP-1α, and MCP-1 had been observed a positive association with the severity of the illness.
RESUMEN
BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.
Asunto(s)
Ixodidae , Phlebovirus , Garrapatas , Animales , Humanos , Ixodidae/genética , Haemaphysalis longicornis , Viroma/genética , Filogenia , Phlebovirus/genéticaRESUMEN
Background: Tick-borne bacteria and protozoa can cause a variety of human and animal diseases in China. It is of great importance to monitor the prevalence and dynamic variation of these pathogens in ticks in ever-changing natural and social environment. Materials and Methods: Ticks were collected from Heilongjiang and Jilin provinces of northeastern China during 2018-2019 followed by morphological identification. The presence of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. was examined by PCR and Sanger sequencing. The obtained sequences were subjected to phylogenetic analysis through Mega 7.0. Statistical analysis was performed using SPSS 24.0. Results: A total of 250 ticks from 5 species of 3 genera were collected. Ixodes and Haemaphysalis ticks carried more species of pathogens than Dermacentor, and the pathogens detected in Haemaphysalis japonica varied significantly among different sampling sites. The infection rates of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. were 41.2%, 0, 2.0%, 7.2%, 1.2%, and 7.2%, respectively. Twelve pathogens were identified, among which Rickettsia raoultii (29.6%), Candidatus Rickettsia tarasevichiae (9.2%), and Theileria equi (4.4%) were the three most common ones. Rickettsia had its dominant vector, that is, R. raoultii had high infection rates in Dermacentor nuttalli and Dermacentor silvarum, Ca. R. tarasevichiae in Ixodes persulcatus, and Rickettsia heilongjiangensis in H. japonica. Interestingly, unclassified species were observed, including a Rickettsia sp., an Ehrlichia sp., a Borrelia sp., and a Babesia sp. Coinfections with different pathogens were identified in 9.2% of all tested ticks, with I. persulcatus most likely to be coinfected (23.8%) and Rickettsia spp. and Borrelia spp. as the most common combination (16.7%). Conclusions: The results of this study reflect high diversity and complexity of pathogens in ticks, which are useful for designing more targeted and effective control measures for tick-borne diseases in China.
Asunto(s)
Ixodes , Rickettsia , Enfermedades por Picaduras de Garrapatas , Animales , China/epidemiología , Filogenia , Prevalencia , Rickettsia/genética , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinariaRESUMEN
Spotted fever group rickettsiae, mainly maintained and transmitted by ticks, are important etiological agents of (re)emerging zoonotic diseases worldwide. It is of great significance to investigate spotted fever group rickettsiae in ticks in different areas for the prevention and control of rickettsioses. In this study, a total of 305 ticks were collected from wild and domestic animals in Chongqing, Guizhou, Yunnan, and Guangxi provinces of southwestern China during 2017-2019 and examined for the presence of spotted fever group rickettsiae by PCR with primers targeting the partial gltA, ompA, rrs, and htrA genes. Results showed that two spotted fever group rickettsiae species, including the pathogenic Candidatus Rickettsia jingxinensis (Rickettsiales: Rickettsiaceae) and a potential novel species Rickettsia sp. sw (Rickettsiales: Rickettsiaceae), were identified. The Ca. R. jingxinensis sequences were recovered from Rhipicephalus microplus (Ixodida: Ixodidae) and Haemaphysalis longicornis (Ixodida: Ixodidae) ticks and phylogenetically clustered with previous Ca. R. jingxinensis, Ca. R. longicornii (Rickettsiales: Rickettsiaceae), and Rickettsia sp. XY118 (Rickettsiales: Rickettsiaceae) strains. Rickettsia sp. sw was detected in Amblyomma geoemydae (Ixodida: Ixodidae) and Rh. microplus. Interestingly, as far as we know, this was the first report of Rickettsia (Rickettsiales: Rickettsiaceae) in A. geoemydae. Phylogenetic analyses indicated that this potential novel species was closely related to R. aeschlimannii (Rickettsiales: Rickettsiaceae) with gltA and ompA genes and grouped in a cluster composed of R. montanensis (Rickettsiales: Rickettsiaceae), R. raoultii (Rickettsiales: Rickettsiaceae), R. aeschlimannii, R. massiliae (Rickettsiales: Rickettsiaceae), and R. rhipicephali (Rickettsiales: Rickettsiaceae) with htrA, while formed a separate clade with rrs. The pathogenicity of Rickettsia sp. sw should be further confirmed. These results expand the knowledge of the geographical distribution and vector distribution of spotted fever group rickettsiae in China and are useful for assessing the potential public health risk.
Asunto(s)
Ixodidae/microbiología , Rickettsia/aislamiento & purificación , Animales , Animales Domésticos/parasitología , Animales Salvajes/parasitología , China , Femenino , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Rhipicephalus/microbiología , Rickettsiosis Exantemáticas/transmisiónRESUMEN
BACKGROUND: Risperidone and paliperidone have been the mainstay treatment for schizophrenia and their potential role in neuroprotection could be associated with brain-derived neurotrophic factor (BDNF) and N400 (an event-related brain potential component). So far, different effects on both BDNF and N400 were reported in relation to various antipsychotic treatments. However, few studies have been conducted on the mechanism of risperidone and paliperidone on BDNF and N400. This study aimed to compare the effects of risperidone and paliperidone on BDNF and the N400 component of the event-related brain potential in patients with first-episode schizophrenia. METHODS: Ninety-eight patients with first-episode schizophrenia were randomly divided into the risperidone and paliperidone groups and treated with risperidone and paliperidone, respectively, for 12 weeks. Serum BDNF level, the latency, and amplitude of the N400 event-related potential before and after the treatment and Positive and Negative Syndrome Scale (PANSS) scores were compared between the two groups. RESULTS: A total of 94 patients were included in the final analysis (47 patients in each group). After the treatment, the serum BDNF levels in both groups increased (all P < 0.01), while no significant difference in serum BDNF level was found between the groups before and after the treatment (all P > 0.05). After the treatment, N400 amplitudes were increased (from 4.73 ± 2.86 µv and 4.51 ± 4.63 µv to 5.35 ± 4.18 µv and 5.52 ± 3.08 µv, respectively) under congruent condition in both risperidone and paliperidone groups (all P < 0.01). Under incongruent conditions, the N400 latencies were shortened in the paliperidone group (from 424.13 ± 110.42 ms to 4.7.41 ± 154.59 ms, P < 0.05), and the N400 amplitudes were increased in the risperidone group (from 5.80 ± 3.50 µv to 7.17 ± 5.51 µv, P < 0.01). After treatment, the total PANSS score in both groups decreased significantly (all P < 0.01), but the difference between the groups was not significant (P > 0.05). A negative correlation between the reduction rate of the PANSS score and the increase in serum BDNF level after the treatment was found in the paliperidone group but not in the risperidone group. CONCLUSIONS: Both risperidone and paliperidone could increase the serum BDNF levels in patients with first-episode schizophrenia and improve their cognitive function (N400 latency and amplitude), but their antipsychotic mechanisms might differ.