RESUMEN
BACKGROUND: Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS: We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS: NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS: Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Asunto(s)
Enfermedad de Alzheimer , Rayos Infrarrojos , Nanomedicina Teranóstica , Humanos , Nanomedicina Teranóstica/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , AnimalesRESUMEN
BACKGROUND: (S)-1-phenyl-1,2-ethanediol is an important chiral intermediate in the synthesis of liquid crystals and chiral biphosphines. (S)-carbonyl reductase II from Candida parapsilosis catalyzes the conversion of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with NADPH as a cofactor. Glucose dehydrogenase with a Ala258Phe mutation is able to catalyze the oxidation of xylose with concomitant reduction of NADP+ to NADPH, while endo-ß-1,4-xylanase 2 catalyzes the conversion of xylan to xylose. In the present work, the Ala258Phe glucose dehydrogenase mutant and endo-ß-1,4-xylanase 2 were introduced into the (S)-carbonyl reductase II-mediated chiral pathway to strengthen cofactor regeneration by using xylan as a naturally abundant co-substrate. RESULTS: We constructed several coupled multi-enzyme systems by introducing (S)-carbonyl reductase II, the A258F glucose dehydrogenase mutant and endo-ß-1,4-xylanase 2 into Escherichia coli. Different strains were produced by altering the location of the encoding genes on the plasmid. Only recombinant E. coli/pET-G-S-2 expressed all three enzymes, and this strain produced (S)-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone as a substrate and xylan as a co-substrate. The optical purity was 100% and the yield was 98.3% (6 g/L 2-HAP) under optimal conditions of 35 °C, pH 6.5 and a 2:1 substrate-co-substrate ratio. The introduction of A258F glucose dehydrogenase and endo-ß-1,4-xylanase 2 into the (S)-carbonyl reductase II-mediated chiral pathway caused a 54.6% increase in yield, and simultaneously reduced the reaction time from 48 to 28 h. CONCLUSIONS: This study demonstrates efficient chiral synthesis using a pentose as a co-substrate to enhance cofactor regeneration. This provides a new approach for enantiomeric catalysis through the inclusion of naturally abundant materials.
Asunto(s)
Escherichia coli/metabolismo , Glicol de Etileno/metabolismo , Xilanos/metabolismoRESUMEN
The expression and purification of melittin (MET) in microbials are difficult because of its antibacterial activities. In this work, MET was fused with a glutathione-S-transferase (GST) tag and expressed in Escherichia coli to overcome its lethality to host cells. The fusion protein GST-MET was highly expressed and then purified by glutathione sepharose high-performance affinity chromatography, digested with prescission protease, and further purified by Superdex Peptide 10/300 GL chromatography. Finally, 3.5 mg/L recombinant melittin (rMET) with a purity of >90% was obtained; its antibacterial activities against Gram-positive Bacillus pumilus and Staphylococcus pasteuri were similar to those of commercial MET. A circular dichroism spectroscopic assay showed that the rMET peptide secondary structure was similar to those of the commercial form. To our knowledge, this is the report of the preparation of active pure rMET with no tags. The successful expression and purification of rMET will enable large-scale, industrial biosynthesis of MET.