Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; : 119462, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908664

RESUMEN

Extreme weather is becoming more frequent due to drastic changes in the climate. Despite this, the body of research focused on the association between temperature extreme events and sperm quality remains sparse. In this study, we elucidate the impact of exposure to environmental temperature extremes on sperm quality. Data for this investigation were derived from the Anhui Prospective Assisted Reproduction Cohort, encompassing the period from 2015 to 2020. Parameters such as sperm concentration, total sperm count, total motility, progressive motility, total motile sperm count, and progressive motile sperm count were quantified from semen samples. We assessed the exposure of participants to temperature extremes during the 0-90 days prior to sampling. This investigation encompassed 15,112 participants, yielding 28,267 semen samples. Our research findings indicate that exposure to low temperature extreme for three consecutive days (at the first percentile threshold) has a detrimental correlation with sperm count parameters and concentration. Similar trends were observed with the second percentile threshold, where significant adverse effects typically manifested after a four-day exposure sequence. Analysis of high temperature extreme showed that exposure at the 98th percentile had adverse effects on all six sperm quality parameters, and the sperm count parameter was particularly sensitive to high temperature, showing significant results immediately after three days of exposure. When considering even more temperature extreme (99th percentile), the negative consequences were more pronounced on the sperm count parameter. Additionally, progressive motility showed a stronger negative response. In summary, parameters associated with sperm count are particularly vulnerable to temperature extremes exposure. Exposure to high temperature extremes environments may also be associated with a decrease in sperm concentration and vitality. The findings of this study suggest that male population should pay attention to avoid exposure to temperature extreme environment, which has important significance for improving the quality of human fertility.

2.
Int Arch Occup Environ Health ; 97(3): 313-329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403848

RESUMEN

OBJECTIVES: This study aimed to reveal the short-term impact of meteorological factors on the mortality risk in hypertensive patients, providing a scientific foundation for formulating pertinent prevention and control policies. METHODS: In this research, meteorological factor data and daily death data of hypertensive patients in Hefei City from 2015 to 2018 were integrated. Time series analysis was performed using distributed lag nonlinear model (DLNM) and generalized additive model (GAM). Furthermore, we conducted stratified analysis based on gender and age. Relative risk (RR) combined with 95% confidence interval (95% CI) was used to represent the mortality risk of single day and cumulative day in hypertensive patients. RESULTS: Single-day lag results indicated that high daily mean temperature (T mean) (75th percentile, 24.9 °C) and low diurnal temperature range (DTR) (25th percentile, 4.20 °C) levels were identified as risk factors for death in hypertensive patients (maximum effective RR values were 1.144 and 1.122, respectively). Extremely high levels of relative humidity (RH) (95th percentile, 94.29%) reduced the risk of death (RR value was 0.893). The stratified results showed that the elderly and female populations are more susceptible to low DTR levels, whereas extremely high levels of RH have a more significant protective effect on both populations. CONCLUSION: Overall, we found that exposure to low DTR and high T mean environments increases the risk of death for hypertensive patients, while exposure to extremely high RH environments significantly reduces the risk of death for hypertensive patients. These findings contribute valuable insights for shaping targeted prevention and control strategies.


Asunto(s)
Hipertensión , Conceptos Meteorológicos , Humanos , Femenino , Anciano , Temperatura , Factores de Tiempo , China/epidemiología , Factores de Riesgo , Hipertensión/epidemiología
3.
BMC Bioinformatics ; 24(1): 38, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737694

RESUMEN

BACKGROUND: The experimental verification of a drug discovery process is expensive and time-consuming. Therefore, efficiently and effectively identifying drug-target interactions (DTIs) has been the focus of research. At present, many machine learning algorithms are used for predicting DTIs. The key idea is to train the classifier using an existing DTI to predict a new or unknown DTI. However, there are various challenges, such as class imbalance and the parameter optimization of many classifiers, that need to be solved before an optimal DTI model is developed. METHODS: In this study, we propose a framework called SSELM-neg for DTI prediction, in which we use a screening approach to choose high-quality negative samples and a spherical search approach to optimize the parameters of the extreme learning machine. RESULTS: The results demonstrated that the proposed technique outperformed other state-of-the-art methods in 10-fold cross-validation experiments in terms of the area under the receiver operating characteristic curve (0.986, 0.993, 0.988, and 0.969) and AUPR (0.982, 0.991, 0.982, and 0.946) for the enzyme dataset, G-protein coupled receptor dataset, ion channel dataset, and nuclear receptor dataset, respectively. CONCLUSION: The screening approach produced high-quality negative samples with the same number of positive samples, which solved the class imbalance problem. We optimized an extreme learning machine using a spherical search approach to identify DTIs. Therefore, our models performed better than other state-of-the-art methods.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Algoritmos , Interacciones Farmacológicas
4.
Cell Mol Life Sci ; 79(8): 466, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35927335

RESUMEN

Single-cell sequencing is widely used in biological and medical studies. However, its application with multiple samples is hindered by inefficient sample processing, high experimental costs, ambiguous identification of true single cells, and technical batch effects. Here, we introduce sample-multiplexing approaches for single-cell sequencing in transcriptomics, epigenomics, genomics, and multiomics. In single-cell transcriptomics, sample multiplexing uses variants of native or artificial features as sample markers, enabling sample pooling and decoding. Such features include: (1) natural genetic variation, (2) nucleotide-barcode anchoring on cellular or nuclear membranes, (3) nucleotide-barcode internalization to the cytoplasm or nucleus, (4) vector-based barcode expression in cells, and (5) nucleotide-barcode incorporation during library construction. Other single-cell omics methods are based on similar concepts, particularly single-cell combinatorial indexing. These methods overcome current challenges, while enabling super-loading of single cells. Finally, selection guidelines are presented that can accelerate technological application.


Asunto(s)
Genómica , Análisis de la Célula Individual , Epigenómica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleótidos , Análisis de la Célula Individual/métodos
5.
Genomics ; 114(3): 110353, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364269

RESUMEN

It has been demonstrated that miRNAs are involved in many biological processes including cell proliferation and differentiation, apoptosis, and stress responses. Although single-cell RNA sequencing technology is prevailing nowadays, it still remains challenging in quantifying miRNA at the single-cell level. Herein, we present the computational methods to infer the single-cell miRNA expression level using its target gene abundances. Firstly, we developed an enrichment-based approach in estimating miRNA expression considering miRNA-mRNA regulation information and miRNA-mRNA correlation signal captured from existing TCGA datasets. Further efforts were made to infer the miRNA expression with machine learning models. The methods were applied to compare the accuracy and robustness with the simulated single-cell data. Finally, we applied the method in single-cell RNA-seq triple negative breast cancer (TNBC) patients to further discover miRNA marker at the single-cell level for the malignant cells. Our tool is available online at: https://github.com/ChengkuiZhao/Single-cell-miRNA-prediction.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Aprendizaje Automático , ARN Mensajero/metabolismo , Diferenciación Celular
6.
Genome Med ; 14(1): 11, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105355

RESUMEN

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer's disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19high myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS .


Asunto(s)
Enfermedad de Alzheimer , Análisis de la Célula Individual , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Humanos , Aprendizaje Automático , Transcriptoma
7.
Genes (Basel) ; 12(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062866

RESUMEN

The distinguishable subregions that compose the hippocampus are differently involved in functions associated with Alzheimer's disease (AD). Thus, the identification of hippocampal subregions and genes that classify AD and healthy control (HC) groups with high accuracy is meaningful. In this study, by jointly analyzing the multimodal data, we propose a novel method to construct fusion features and a classification method based on the random forest for identifying the important features. Specifically, we construct the fusion features using the gene sequence and subregions correlation to reduce the diversity in same group. Moreover, samples and features are selected randomly to construct a random forest, and genetic algorithm and clustering evolutionary are used to amplify the difference in initial decision trees and evolve the trees. The features in resulting decision trees that reach the peak classification are the important "subregion gene pairs". The findings verify that our method outperforms well in classification performance and generalization. Particularly, we identified some significant subregions and genes, such as hippocampus amygdala transition area (HATA), fimbria, parasubiculum and genes included RYR3 and PRKCE. These discoveries provide some new candidate genes for AD and demonstrate the contribution of hippocampal subregions and genes to AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Genotipo , Hipocampo/diagnóstico por imagen , Modelos Genéticos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Árboles de Decisión , Femenino , Humanos , Masculino , Proteína Quinasa C-epsilon/genética , Canal Liberador de Calcio Receptor de Rianodina/genética
8.
Genes (Basel) ; 11(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604877

RESUMEN

Cleavage and polyadenylation are essential processes that can impact many aspects of mRNA fate. Most eukaryotic genes have alternative polyadenylation (APA) events. While the heterogeneity of mRNA polyadenylation isoform choice has been studied in specific tissues, less attention has been paid to the neuronal heterogeneity of APA selection at single-nucleus resolution. APA is highly controlled during development and neuronal activation, however, to what extent APA events vary in a specific neuronal cell population and the regulatory mechanisms are still unclear. In this paper, we investigated dynamic APA usage in different cell types using snRNA-seq data of 1424 human brain cells generated by single-cell 3' RNA sequencing. We found that distal APA sites are not only favored by global neuronal cells, but that their usage also varies between the principal types of neuronal cell populations (excitatory neurons and inhibitory neurons). A motif analysis and a gene functional analysis indicated the enrichment of RNA-binding protein (RBP) binding sites and neuronal functions for the set of genes with neuron-enhanced distal PAS usage. Our results revealed the extensive involvement of APA regulation in neuronal populations at the single-nucleus level, providing new insights into roles for APA in specific neuronal cell populations, as well as utility in future functional studies.


Asunto(s)
Núcleo Celular/genética , Neuronas/metabolismo , Poliadenilación/genética , ARN Mensajero/genética , Regiones no Traducidas 3'/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica/genética , Humanos , Neuronas/patología , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos
9.
BMC Med Genomics ; 13(Suppl 11): 195, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33371906

RESUMEN

BACKGROUND: Existing studies have demonstrated that the integrative analysis of histopathological images and genomic data can be used to better understand the onset and progression of many diseases, as well as identify new diagnostic and prognostic biomarkers. However, since the development of pathological phenotypes are influenced by a variety of complex biological processes, complete understanding of the underlying gene regulatory mechanisms for the cell and tissue morphology is still a challenge. In this study, we explored the relationship between the chromatin accessibility changes and the epithelial tissue proportion in histopathological images of estrogen receptor (ER) positive breast cancer. METHODS: An established whole slide image processing pipeline based on deep learning was used to perform global segmentation of epithelial and stromal tissues. We then used canonical correlation analysis to detect the epithelial tissue proportion-associated regulatory regions. By integrating ATAC-seq data with matched RNA-seq data, we found the potential target genes that associated with these regulatory regions. Then we used these genes to perform the following pathway and survival analysis. RESULTS: Using canonical correlation analysis, we detected 436 potential regulatory regions that exhibited significant correlation between quantitative chromatin accessibility changes and the epithelial tissue proportion in tumors from 54 patients (FDR < 0.05). We then found that these 436 regulatory regions were associated with 74 potential target genes. After functional enrichment analysis, we observed that these potential target genes were enriched in cancer-associated pathways. We further demonstrated that using the gene expression signals and the epithelial tissue proportion extracted from this integration framework could stratify patient prognoses more accurately, outperforming predictions based on only omics or image features. CONCLUSION: This integrative analysis is a useful strategy for identifying potential regulatory regions in the human genome that are associated with tumor tissue quantification. This study will enable efficient prioritization of genomic regulatory regions identified by ATAC-seq data for further studies to validate their causal regulatory function. Ultimately, identifying epithelial tissue proportion-associated regulatory regions will further our understanding of the underlying molecular mechanisms of disease and inform the development of potential therapeutic targets.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cromatina/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Imagen Molecular/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Biología Computacional/métodos , Receptor alfa de Estrógeno/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Tasa de Supervivencia
10.
JCO Clin Cancer Inform ; 4: 480-490, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453636

RESUMEN

PURPOSE: Tumor-infiltrating lymphocytes (TILs) and their spatial characterizations on whole-slide images (WSIs) of histopathology sections have become crucial in diagnosis, prognosis, and treatment response prediction for different cancers. However, fully automatic assessment of TILs on WSIs currently remains a great challenge because of the heterogeneity and large size of WSIs. We present an automatic pipeline based on a cascade-training U-net to generate high-resolution TIL maps on WSIs. METHODS: We present global cell-level TIL maps and 43 quantitative TIL spatial image features for 1,000 WSIs of The Cancer Genome Atlas patients with breast cancer. For more specific analysis, all the patients were divided into three subtypes, namely, estrogen receptor (ER)-positive, ER-negative, and triple-negative groups. The associations between TIL scores and gene expression and somatic mutation were examined separately in three breast cancer subtypes. Both univariate and multivariate survival analyses were performed on 43 TIL image features to examine the prognostic value of TIL spatial patterns in different breast cancer subtypes. RESULTS: The TIL score was in strong association with immune response pathway and genes (eg, programmed death-1 and CLTA4). Different breast cancer subtypes showed TIL score in association with mutations from different genes suggesting that different genetic alterations may lead to similar phenotypes. Spatial TIL features that represent density and distribution of TIL clusters were important indicators of the patient outcomes. CONCLUSION: Our pipeline can facilitate computational pathology-based discovery in cancer immunology and research on immunotherapy. Our analysis results are available for the research community to generate new hypotheses and insights on breast cancer immunology and development.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias de la Mama/genética , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Pronóstico , Receptor ErbB-2
11.
Artículo en Inglés | MEDLINE | ID: mdl-32850739

RESUMEN

Expression quantitative trait loci (eQTL) analysis is useful for identifying genetic variants correlated with gene expression, however, it cannot distinguish between causal and nearby non-functional variants. Because the majority of disease-associated SNPs are located in regulatory regions, they can impact allele-specific binding (ASB) of transcription factors and result in differential expression of the target gene alleles. In this study, our aim was to identify functional single-nucleotide polymorphisms (SNPs) that alter transcriptional regulation and thus, potentially impact cellular function. Here, we present regSNPs-ASB, a generalized linear model-based approach to identify regulatory SNPs that are located in transcription factor binding sites. The input for this model includes ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing) raw read counts from heterozygous loci, where differential transposase-cleavage patterns between two alleles indicate preferential transcription factor binding to one of the alleles. Using regSNPs-ASB, we identified 53 regulatory SNPs in human MCF-7 breast cancer cells and 125 regulatory SNPs in human mesenchymal stem cells (MSC). By integrating the regSNPs-ASB output with RNA-seq experimental data and publicly available chromatin interaction data from MCF-7 cells, we found that these 53 regulatory SNPs were associated with 74 potential target genes and that 32 (43%) of these genes showed significant allele-specific expression. By comparing all of the MCF-7 and MSC regulatory SNPs to the eQTLs in the Genome-Tissue Expression (GTEx) Project database, we found that 30% (16/53) of the regulatory SNPs in MCF-7 and 43% (52/122) of the regulatory SNPs in MSC were also in eQTL regions. The enrichment of regulatory SNPs in eQTLs indicated that many of them are likely responsible for allelic differences in gene expression (chi-square test, p-value < 0.01). In summary, we conclude that regSNPs-ASB is a useful tool for identifying causal variants from ATAC-seq data. This new computational tool will enable efficient prioritization of genetic variants identified as eQTL for further studies to validate their causal regulatory function. Ultimately, identifying causal genetic variants will further our understanding of the underlying molecular mechanisms of disease and the eventual development of potential therapeutic targets.

12.
Adv Mater ; 31(46): e1903559, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31566819

RESUMEN

Large-bandgap perovskites offer a route to improve the efficiency of energy capture in photovoltaics when employed in the front cell of perovskite-silicon tandems. Implementing perovskites as the front cell requires an inverted (p-i-n) architecture; this architecture is particularly effective at harnessing high-energy photons and is compatible with ionic-dopant-free transport layers. Here, a power conversion efficiency of 21.6% is reported, the highest among inverted perovskite solar cells (PSCs). Only by introducing a secondary amine into the perovskite structure to form MA1- x DMAx PbI3 (MA is methylamine and DMA is dimethylamine) are defect density and carrier recombination suppressed to enable record performance. It is also found that the controlled inclusion of DMA increases the hydrophobicity and stability of films in ambient operating conditions: encapsulated devices maintain over 80% of their efficiency following 800 h of operation at the maximum power point, 30 times longer than reported in the best prior inverted PSCs. The unencapsulated devices show record operational stability in ambient air among PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA