Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Microb Pathog ; 189: 106590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402917

RESUMEN

CONTEXT: Changes in the gut microbiome are linked with Type 2diabetes mellitus (T2DM) development, but alterations in patients with diabetic retinopathy (DR) are still being debated. OBJECTIVE: To investigate the differences in biodiversity and relative abundance of gut microbiome between patients with DR and T2DM. METHODS: A comprehensive search was performed in five electronic databases (PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, and CNKI) from the inception of each database through to August 2023. The standardized mean difference (SMD) and its 95% confidence interval (CI) were estimated using Stata 15.1. Furthermore, the alpha diversity index and relative abundance of the gut microbiome were calculated. The Egger test determined publication bias in the literature. RESULTS: Seven case-control studies were included in the final dataset, comprising 195 patients with DR and 211 patients with T2DM. Compared to T2DM patients, patients in the DR group had a reduced but not significantly different α-diversity. The analysis of microbial composition at the phylum level revealed a marked increase in the relative abundance of Bacteroidetes(ES = 23.27, 95%CI[8.30, 38.23], P = 0.000) and a decline in Firmicutes(ES = 47.05, 95%CI[36.58, 57.52], P = 0.000), Proteobacteria (ES = 11.08, 95%CI[6.08, 16.07], P = 0.000) and Actinobacteria (ES = 10.43, 95%CI[1.64, 19.22], P = 0.001) in patients with DR when compared to those with T2DM. CONCLUSIONS: An association exists between alterations in the gut microbiome of T2DM and the development and progression of DR. This suggests that re-establishing homeostasis of the gut microbiome could be a potential way to prevent or treat DR and requires further confirmation in future studies. REGISTRATION DATABASE: Prospero. REGISTRATION NUMBER: CRD42023455280.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Estudios de Casos y Controles
2.
J Integr Neurosci ; 23(1): 14, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38287843

RESUMEN

BACKGROUND: Heliox shows protective effects against acute focal ischemia-reperfusion injury in the brain. However, further research is needed to unveil the intricate molecular mechanisms involved. Determining how heliox affects ferroptosis caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in SH-SY5Y cells as well as the underlying mechanism was the goal of the current work. METHODS: With the use of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), JC-1, and methyl thiazolyl tetrazolium, we assessed the survival, reactive oxygen species (ROS), and mitochondrial membrane potential in SH-SY5Y cells after they had been exposed to OGD/R and heliox. The expression of molecules associated with ferroptosis and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway was analyzed using quantitative polymerase chain reaction (PCR) and immunoblotting, while malondialdehyde (MDA), oxidized glutathione disulfide (GSSG), ferrous ion (Fe2+), and reduced glutathione (GSH) levels were evaluated using biochemical kits. RESULTS: OGD/R treatment reduced the GSH to GSSG ratio; the potential of the mitochondrial membrane; the expression of the proteins GSH, SLC7A11, and glutathione peroxidase 4 (GPX4); and the ability of SH-SY5Y cells to survive. In contrast, OGD/R treatment increased the expression of cyclooxygenase-2 (COX2), ACSL4, and ferritin heavy chain 1 (FTH1) proteins, the production of MDA and GSSG, and the levels of ROS and Fe2+. However, heliox effectively mitigated all these OGD/R-induced effects. Furthermore, in OGD/R-treated SH-SY5Y cells, heliox administration stimulated the PI3K/AKT pathway while suppressing the nuclear factor-κB (NF-κB) pathway. When MK-2206, an AKT inhibitor, was applied concurrently to the cells, these outcomes were reversed. CONCLUSIONS: Heliox prevents OGD/R from causing ferroptosis in SH-SY5Y cells by activating the PI3K/AKT pathway. This suggests a promising therapeutic potential for heliox use in the management of ischemia/reperfusion injury.


Asunto(s)
Ferroptosis , Helio , Neuroblastoma , Daño por Reperfusión , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucosa/metabolismo , Disulfuro de Glutatión/uso terapéutico , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Reperfusión
3.
Ecotoxicol Environ Saf ; 253: 114674, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827899

RESUMEN

Excessive fluoride exposure can cause liver injury, but the specific mechanisms need further investigation. We aimed to explore the role of impaired lysosomal biogenesis and defective autophagy in fluoride-induced hepatotoxicity and its potential mechanisms, focusing on the role of transcription factor E3 (TFE3) in regulating hepatocyte lysosomal biogenesis. To this end, we established a Sprague-Dawley (SD) rat model exposed to sodium fluoride (NaF) and a rat liver cell line (BRL3A) model exposed to NaF. The results showed that NaF exposure diminished liver function and led to apoptosis as well as autophagosome accumulation and impaired autophagic degradation. In addition, NaF exposure caused compromised lysosome biogenesis and decreased lysosomal degradation, and inhibited TFE3 nuclear translocation. Notably, the mTOR inhibitors rapamycin (RAPA) and Ad-TFE3 promoted lysosomal biogenesis and enhanced lysosomal degradation function. Furthermore, RAPA and Ad-TFE3 reduced NaF-induced apoptosis by alleviating impaired autophagic degradation. In conclusion, NaF impairs lysosomal biogenesis by inhibiting TFE3 nuclear translocation, decreasing lysosomal degradation function, resulting in impaired autophagic degradation, and ultimately inducing apoptosis. Therefore, TFE3 may be a promising therapeutic target for fluoride-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fluoruros , Ratas , Animales , Fluoruros/toxicidad , Fluoruros/metabolismo , Ratas Sprague-Dawley , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Autofagia , Fluoruro de Sodio/toxicidad , Lisosomas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
4.
Ecotoxicol Environ Saf ; 250: 114490, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36628887

RESUMEN

Fluoride can induce hepatotoxicity, but the mechanisms responsible are yet to be investigated. This study sought to investigate the role and mechanism of mitochondrial reactive oxygen species (mtROS), autophagy, and ferroptosis in fluoride-induced hepatic injury with a focus on the role of mtROS-mediated cross-talk between autophagy and ferroptosis. To this end, an in vivo Sprague-Dawley rat model and in vitro BRL3A cells were exposed to sodium fluoride (NaF). The results revealed that NaF exposure diminished the mitochondrial membrane potential, increased mtROS production and TOMM20 expression, and induced autophagic flux blockage and ferroptosis in vivo and in vitro. Furthermore, the autophagy activator (RAPA) enhanced GPX4 expression while inhibiting ACSL4 expression, reduced the accumulation of ferrous ions in BRL3A cells, and restored lipid peroxidation levels, thus inhibiting ferroptosis. Fer-1, a ferritinase inhibitor, downregulated the expression of LC3-II and p62, increased the number of autolysosomes while decreasing the number of autophagosomes, and alleviated the blockage of autophagic flux by improving autophagic degradation. These results suggest the occurrence of a cross-talk between autophagy and ferroptosis. The mtROS inhibitor (Mito-TEMPO) could alleviate autophagic flux blockage and inhibit ferroptosis in NaF-induced liver injury. In addition, the cross-talk between NaF-induced autophagy and ferroptosis was dependent on the mtROS pathway.


Asunto(s)
Ferroptosis , Ratas , Animales , Fluoruros/toxicidad , Ratas Sprague-Dawley , Autofagia , Fluoruro de Sodio , Hígado
5.
Ecotoxicol Environ Saf ; 250: 114511, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608573

RESUMEN

Fluoride is capable of inducing developmental neurotoxicity; regrettably, the mechanism is obscure. We aimed to probe the role of lysosomal biogenesis disorder in developmental fluoride neurotoxicity-specifically, the regulating effect of the transient receptor potential mucolipin 1 (TRPML1)/transcription factor EB (TFEB) signaling pathway on lysosomal biogenesis. Sprague-Dawley rats were given fluoridated water freely, during pregnancy to the parental rats to 2 months after delivery to the offspring. In addition, neuroblastoma SH-SY5Y cells were treated with sodium fluoride (NaF), with or without mucolipin synthetic agonist 1 (ML-SA1) or adenovirus TFEB (Ad-TFEB) intervention. Our findings revealed that NaF impaired learning and memory as well as memory retention capacities in rat offspring, induced lysosomal biogenesis disorder, and decreased lysosomal degradation capacity, autophagosome accumulation, autophagic flux blockade, apoptosis, and pyroptosis. These changes were evidenced by the decreased expression of TRPML1, nuclear TFEB, LAMP2, CTSB, and CTSD, as well as increased expression of LC3-II, p62, cleaved PARP, NLRP3, Caspase1, and IL-1ß. Furthermore, TRPML1 activation and TFEB overexpression both restored TFEB nuclear protein expression and promoted lysosomal biogenesis while enhancing lysosomal degradation capacity, recovering autophagic flux, and attenuating NaF-induced apoptosis and pyroptosis. Taken together, these results show that NaF promotes the progression of developmental fluoride neurotoxicity by inhibiting TRPML1/TFEB expression and impeding lysosomal biogenesis. Notably, the activation of TRPML1/TFEB alleviated NaF-induced developmental neurotoxicity. Therefore, TRPML1/TFEB may be promising markers of developmental fluoride neurotoxicity.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Fluoruros , Neuroblastoma , Síndromes de Neurotoxicidad , Canales de Potencial de Receptor Transitorio , Animales , Humanos , Ratas , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Fluoruros/toxicidad , Lisosomas , Neuroblastoma/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Ratas Sprague-Dawley , Fluoruro de Sodio/toxicidad , Canales de Potencial de Receptor Transitorio/metabolismo
6.
Ecotoxicol Environ Saf ; 255: 114772, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924562

RESUMEN

Chronic fluoride exposure can cause developmental neurotoxicity, however the precise mechanisms remain unclear. To explore the mechanism of mitophagy in fluoride-induced developmental neurotoxicity, specifically focusing on PRKAA1 in regulating the PINK1/Parkin pathway, we established a Sprage Dawley rat model with continuous sodium fluoride (NaF) exposure and an NaF-treated SH-SY5Y cell model. We found that NaF exposure increased the levels of LC3-Ⅱ and p62, impaired autophagic degradation, and subsequently blocked autophagic flux. Additionally, NaF exposure increased the expression of PINK1, Parkin, TOMM-20, and Cyt C and cleaved PARP in vivo and in vitro, indicating NaF promotes mitophagy and neuronal apoptosis. Meanwhile, phosphoproteomics and western blot analysis showed that NaF treatment enhanced PRKAA1 phosphorylation. Remarkably, the application of both 3-methyladenosine (3-MA; autophagy inhibitor) and dorsomorphin (DM; AMPK inhibitor) suppressed NaF-induced neuronal apoptosis by restoring aberrant mitophagy. In addition, 3-MA attenuated an increase in p62 protein levels and NaF-induced autophagic degradation. Collectively, our findings indicated that NaF causes aberrant mitophagy via PRKAA1 in a PINK1/Parkin-dependent manner, which triggers neuronal apoptosis. Thus, regulating PRKAA1-activated PINK1/Parkin-dependent mitophagy may be a potential treatment for NaF-induced developmental neurotoxicity.


Asunto(s)
Neuroblastoma , Síndromes de Neurotoxicidad , Ratas , Humanos , Animales , Mitofagia/fisiología , Fluoruros/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Fluoruro de Sodio/toxicidad , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo
7.
Anal Chem ; 94(16): 6200-6205, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35426653

RESUMEN

The assay of kinase activity with ultrahigh sensitivity is important to medical diagnostics and drug discovery. Herein, we report the biologically mediated RAFT polymerization (BMRP) and its potential use as an efficient amplification strategy in the ultrasensitive electrochemical sensing of kinase activity. In BMRP, the reversible addition-fragmentation chain-transfer (RAFT) process is initiated and sustained by the reduced form of coenzyme I (i.e., NADH), which can efficiently mediate the direct fragmentation of thiocarbonylthio (TCT) compounds (or the TCT-capped dormant chains) to produce an initiating/propagating radical under mild conditions. Due to the absence of exogenous radicals, the notorious radical termination in RAFT equilibrium can be greatly suppressed. For the sensing of kinase activity, the recognition peptides, without carboxyl groups, are immobilized via the Au-S self-assembly. After phosphorylation, TCT compounds (as RAFT agents) are tethered to the enzymatically generated phosphate groups via the carboxylate-Zr(IV)-phosphate (CZP) linkage. Subsequently, the BMRP of ferrocenylmethyl methacrylate (FcMMA) results in the labeling of each phosphate group with hundreds to thousands of Fc tags, thereby greatly amplifying the sensing signal. Obviously, the BMRP-based strategy is biologically friendly, highly efficient, uncomplicated, and quite low-cost. The detection limit of 1.85 mU/mL has been achieved toward the selective sensing of the cAMP-dependent protein kinase (PKA). Moreover, the proposed kinase sensor is applicable to inhibitor screening and kinase activity sensing in serum samples. By virtue of its low cost, high sensitivity and selectivity, and uncomplicated operation, the proposed kinase sensor holds great potential in medical diagnostics and drug discovery.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Fosfatos , Fosforilación , Polimerizacion
8.
Anal Chem ; 94(28): 10206-10212, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35793076

RESUMEN

As a class of oligosaccharide chain-containing proteins, glycoproteins are of great value in screening and early diagnosis of malignant tumors and other major diseases. Herein, we report a universal boronate affinity-based electrochemical aptasensor for point-of-care glycoprotein detection. Aptasensing of glycoproteins involves the specific recognition and capture of target glycoproteins by end-tethered nucleic acid aptamers and the site-specific labeling of ferrocene tags via the phenylboronic acid (PBA)-based boronate affinity interactions because the cis-diol sites of oligosaccharide chains on glycoproteins can selectively react with the PBA receptor groups to form cyclic phenylborates in aqueous basic media. Due to the presence of hundreds to thousands of cis-diol sites on a glycoprotein, a large number of ferrocene tags can be recruited for the signal-on aptasensing of glycoproteins at a low-abundance level, eliminating the need for extra amplification strategies. As a result, the boronate affinity-based electrochemical aptasensor is highly sensitive and selective for glycoprotein detection and tolerant to the false-positive results. The detection limit for α-fetoprotein (AFP) is 0.037 ng/mL, with a linear response ranging from 0.1 to 100 ng/mL. In addition to the merits of simple operation, short assay time, and low detection cost, the aptasensor is applicable to the detection of glycoproteins in serum samples and the point-of-care detection using disposable flexible electrodes. Overall, this work provides a universal and promising platform for the point-of-care detection of glycoproteins, holding great potential in screening and early diagnosis of glycoprotein-related malignant tumors and other major diseases.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Glicoproteínas , Oro , Límite de Detección , Metalocenos , Sistemas de Atención de Punto
9.
Ecotoxicol Environ Saf ; 236: 113500, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421827

RESUMEN

Fluoride is capable of inducing developmental neurotoxicity, yet its mechanisms remain elusive. We aimed to explore the possible role and mechanism of autophagic flux blockage caused by abnormal lysosomal pH in fluoride-induced developmental neurotoxicity, focusing on the role of V-ATPase in regulating the neuronal lysosomal pH. Using Sprague-Dawley rats exposed to sodium fluoride (NaF) from gestation through delivery until the neonatal offspring reached six months of age as an in vivo model. The results showed that NaF impaired the cognitive abilities of the offspring rats. In addition, NaF reduced V-ATPase expression, diminished lysosomal degradation capacity and blocked autophagic flux, and increased apoptosis in the hippocampus of offspring. Consistently, these results were validated in SH-SY5Y cells incubated with NaF. Moreover, NaF increased the SH-SY5Y lysosomal pH. Mechanistically, V-ATPase B2 overexpression and ATP effectively restored V-ATPase expression, reducing NaF-induced lysosomal alkalinization while increasing lysosomal degradation capacity. Notably, those above pharmacological and molecular interventions diminished NaF-induced apoptosis by restoring autophagic flux. Collectively, the present findings suggested that NaF impairs the lysosomal pH raised by V-ATPase. This leads to reduced lysosomal degradation capacity and triggers autophagic flux blockage and apoptosis, thus contributing to neuronal death. Therefore, V-ATPase might be a promising indicator of developmental fluoride neurotoxicity.


Asunto(s)
Fluoruros , Síndromes de Neurotoxicidad , Adenosina Trifosfatasas/metabolismo , Animales , Autofagia , Fluoruros/metabolismo , Concentración de Iones de Hidrógeno , Lisosomas , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Ratas , Ratas Sprague-Dawley , Fluoruro de Sodio/toxicidad
10.
Ecotoxicol Environ Saf ; 230: 113108, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953272

RESUMEN

Fluoride is capable of inducing developmental neurotoxicity, but the mechanisms involved remain unclear. We aimed to explore the role of autophagosome-lysosome fusion in developmental fluoride neurotoxicity, particularly focusing on the interaction between ATG14 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. We developed in vivo models of Sprague-Dawley rats exposed to sodium fluoride (NaF) from the pregnancy of parental rats until the offspring were two months old and in vitro models of NaF and/or Ad-ATG14-treated SH-SY5Y cells. We assessed neurobehavioral changes in offspring and further investigated the effects of NaF exposure on autophagic flux, apoptosis, autophagosome-lysosome fusion, and the interaction between ATG14 and the SNARE complex. NaF exposure impaired offspring learning and memory capabilities and induced the accumulation of autophagosomes and autophagic flux blockage and apoptosis, as indicated by increased LC3-II, p62, and cleaved-caspase-3 expression in vivo and in vitro. In addition, NaF treatment downregulated the protein expression of ATG14 and the SNARE complex and induced autophagosome-lysosome fusion blockage as evidenced by decreased ATG14, STX17, SNAP29, and VAMP8 expression and diminished colocalization of autophagosomes and lysosomes in vivo and in vitro. Furthermore, ATG14 upregulation enhanced the interaction of ATG14 and the SNARE complex to facilitate autophagosome-lysosome fusion, thereby restoring autophagic flux and alleviating NaF-induced apoptosis. In conclusion, NaF exhibited developmental neurotoxicity by restraining the interaction of ATG14 with the SNARE complex and hindering autophagosome-lysosome fusion, thereby participating in the occurrence and development of fluoride neurotoxicity. Notably, ATG14 upregulation protects against developmental fluoride neurotoxicity, and ATG14 may serve as a promising biomarker for further epidemiological investigation.

11.
Biol Trace Elem Res ; 201(9): 4472-4483, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36464725

RESUMEN

Fluoride can cause developmental neurotoxicity; however, the precise mechanism has yet to be determined. We aimed to explore the possible role and mechanism of fluoride-induced developmental neurotoxicity, specifically the significance of the lysosomal stress response. As an in vivo model, Sprague Dawley rats were exposed to sodium fluoride (NaF) from embryo to 2 months of age. We found that NaF caused autophagic flux blockage and apoptosis in the rat hippocampus. These results were validated in human neuroblastoma (SH-SY5Y) cells in vitro. In addition, in SH-SY5Y cells, NaF hindered autophagosome-lysosome fusion, decreased lysosomal degradation, and elevated lysosomal pH, which is the most prominent hallmark of a lysosomal stress response. Interestingly, rapamycin promoted autophagosome-lysosome fusion, effectively restoring autophagic flux and reducing apoptosis. Notably, bafilomycin A1, a lysosomal lumen alkalizer, unsurprisingly exacerbated the NaF-induced increase in lysosomal pH and decreased lysosomal degradability, as well as enhanced apoptosis of SH-SY5Y cells. In conclusion, our results suggest that NaF exposure initiates excessive lysosomal stress response, resulting in elevated lysosomal pH, decreased lysosomal degradation, and blocked autophagic flux, which leads to neuronal apoptosis. Thus, the lysosomal stress response may be a promising target for the prevention and treatment of fluoride-induced developmental neurotoxicity.


Asunto(s)
Neuroblastoma , Síndromes de Neurotoxicidad , Animales , Humanos , Ratas , Autofagia , Línea Celular Tumoral , Fluoruros/toxicidad , Lisosomas/metabolismo , Neuroblastoma/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Ratas Sprague-Dawley , Fluoruro de Sodio/toxicidad
12.
Biol Trace Elem Res ; 201(8): 3850-3860, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36327065

RESUMEN

The cerebral cortex is closely associated with learning and memory, and fluoride is capable of inducing cortical toxicity, but its mechanism is unclear. This study aimed to investigate the role of endoplasmic reticulum stress and autophagy in fluoride-induced cortical toxicity. Rats exposed to sodium fluoride (NaF) were used as an in vivo model. The results showed that NaF exposure impaired the learning and memory capacities and increased urinary fluoride levels in rats. In addition, NaF exposure induced excessive endoplasmic reticulum stress and associated apoptosis, as evidenced by elevated IRE1α, GRP78, cleaved caspase-12, and cleaved caspase-3, as well as defective autophagy, as evidenced by increased expression of Beclin1, LC3-II, and p62 in cortical areas. Importantly, the endoplasmic reticulum stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated endoplasmic reticulum stress as well as defective autophagy, thus confirming the critical role of endoplasmic reticulum stress and autophagy in fluoride-induced cortical toxicity. Taken together, these results suggest that excessive endoplasmic reticulum stress and its mediated defective autophagy lead to fluoride-induced cortical toxicity. This provides new insights into the mechanisms of fluoride-induced neurotoxicity and a new theoretical basis for the prevention and treatment of fluoride-induced neurotoxicity.


Asunto(s)
Endorribonucleasas , Fluoruros , Ratas , Animales , Fluoruros/toxicidad , Proteínas Serina-Treonina Quinasas , Fluoruro de Sodio/farmacología , Estrés del Retículo Endoplásmico , Apoptosis , Autofagia , Corteza Cerebral
13.
BMC Med Genomics ; 16(1): 287, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968618

RESUMEN

BACKGROUND: As the most common type of glaucoma, the etiology of primary open-angle glaucoma (POAG) has not been unified. Autophagy may affect the occurrence and development of POAG, while the specific mechanism and target need to be further explored. METHODS: The GSE27276 dataset from the Gene Expression Omnibus (GEO) database and the autophagy gene set from the GeneCards database were selected to screen differentially expressed autophagy-related genes (DEARGs) of POAG. Hub DEARGs were selected by constructing protein-protein interaction (PPI) networks and utilizing GSE138125 dataset. Subsequently, immune cell infiltration analysis, genome-wide association study (GWAS) analysis, gene set enrichment analysis (GSEA) and other analyses were performed on the hub genes. Eventually, animal experiments were performed to verify the mRNA levels of the hub genes by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS: A total of 67 DEARGs and 2 hub DEARGs, HSPA8 and RPL15, were selected. The hub genes were closely related to the level of immune cell infiltration. GWAS analysis confirmed that the causative regions of the 2 hub genes in glaucoma were on chromosome 11 and chromosome 3, respectively. GSEA illustrated that pathways enriched for highly expressed HSPA8 and RPL15 contained immunity, autophagy, gene expression and energy metabolism-related pathways. qRT-PCR confirmed that the expression of Hspa8 and Rpl15 in the rat POAG model was consistent with the results of bioinformatics analysis. CONCLUSIONS: This study indicated that HSPA8 and RPL15 may affect the progression of POAG by regulating autophagy and provided new ideas for the pathogenesis and treatment of POAG.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Animales , Ratas , Humanos , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Cromosomas Humanos Par 11 , Autofagia/genética
14.
Microorganisms ; 11(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677442

RESUMEN

There is an impending crisis in healthcare brought about by a new era of untreatable infections caused by bacteria resistant to all available antibiotics. Thus, there is an urgent need to identify novel antimicrobial agents to counter the continuing threat posed by formerly treatable infections. We previously reported that a natural mineral clay known as Kisameet clay (KC) is a potent inhibitor of the organisms responsible for acute infections. Chronic bacterial infections present another major challenge to treatment by antimicrobials, due to their prolonged nature, which results in repeated exposure to antibiotics and a constant selection for antimicrobial resistance. A prime example is bacteria belonging to the Burkholderia cepacia complex (Bcc), which particularly causes some of the most serious chronic lung infections in patients with cystic fibrosis (CF) associated with unpredictable clinical outcomes, poor prognosis, and high mortality rates. Eradication of these organisms from CF patients with limited effective antimicrobial options is a major challenge. Novel therapeutic approaches are urgently required. Here, we report the in vitro antibacterial activity of KC aqueous suspensions (1-10% w/v) and its aqueous extract (L100) against a collection of extensively and multi-drug resistant clinical isolates of Bcc, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia isolated from patients with CF. These findings present a potential novel therapy for further investigation in the clinic.

15.
Sci Total Environ ; 863: 160883, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526194

RESUMEN

Arsenic exposure may disrupt sex steroid hormones, causing endocrine disruption. However, human evidence is limited and inconsistent, especially for children and adolescents. To evaluate the independent and combined associations between arsenic exposure and serum sex steroid hormones in children and adolescents, we conducted a cross-sectional analysis of data from 1063 participants aged 6 to 19 years from the 2013-2016 National Health and Nutrition Examination Survey (NHANES). Three urine arsenic metabolites were examined, as well as three serum sex steroid hormones, estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG). The ratio of TT to E2 (TT/E2) and the free androgen index (FAI) generated by TT/SHBG were also assessed. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to evaluate the associations of individual or arsenic metabolite combinations with sex steroid hormones by gender and age stratification. Positive associations were found between total arsenic and arsenic metabolites with TT, E2, and FAI. In contrast, negative associations were found between arsenic metabolites and SHBG. Furthermore, there was an interaction after gender-age stratification between DMA and SHBG in female adolescents. Notably, based on the WQS and BKMR model results, the combined association of arsenic and its metabolites was positively associated with TT, E2, and FAI and negatively associated with SHBG. Moreover, DMA and MMA dominated the highest weights among the arsenic metabolites. Overall, our results indicate that exposure to arsenic, either alone or in mixtures, may alter sex steroid hormone levels in children and adolescents.


Asunto(s)
Arsénico , Adolescente , Niño , Femenino , Humanos , Adulto Joven , Teorema de Bayes , Estudios Transversales , Estradiol , Hormonas Esteroides Gonadales , Encuestas Nutricionales , Globulina de Unión a Hormona Sexual/análisis , Testosterona
16.
iScience ; 24(12): 103491, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34917894

RESUMEN

Two-dimensional (2D) semi-conductive transition metal dichalcogenides (TMDCs) have shown advantages for logic application. Complementary metal-oxide-semiconductor (CMOS) inverter is an important component in integrated circuits in view of low power consumption. So far, the performance of the reported TMDCs-based CMOS inverters is not satisfactory. Besides, most of the inverters were made of mechanically exfoliated materials, which hinders their reproducible production and large-scale integration in practical application. In this study, we demonstrate a practical approach to fabricate CMOS inverter arrays using large-area p-MoTe2 and n-MoS2, which are grown via chemical vapor deposition method. The current characteristics of the channel materials are balanced by atomic layer depositing Al2O3. Complete logic swing and clear dynamic switching behavior are observed in the inverters. Especially, ultra-low power consumption of ∼0.37 nW is achieved. Our work paves the way for the application of 2D TMDCs materials in large-scale low-power-consumption logic circuits.

17.
Chemosphere ; 73(4): 532-8, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18649918

RESUMEN

Equilibrium partitioning coefficients between an industrial coal tar sample and water (KCT/w) were determined for 41 polar and nonpolar solutes in batch systems. Together with literature values, 69 KCT/w data were analyzed using the following model approaches: Raoult's law, the single parameter linear free energy relationship (SPLFER) with octanol-water partitioning coefficients (Kow), the linear solvation energy relationships (LSERs), SPARC and COSMOtherm. Estimations by Raoult's law and the SPLFER agreed well with the experimental log KCT/w values for the investigated coal tar, with root mean square errors (RMSE) of 0.31 and 0.33, respectively. LSER resulted in as good estimations (RMSE=0.29) as the previous two. The LSER analysis revealed significant hydrogen (H)-bond acceptor properties of the studied coal tar phase. Using naphthalene as a surrogate solvent for the coal tar phase, SPARC and COSMOtherm provided fairly good predictions (RMSE of 0.63 and 0.65, respectively) of log KCT/w, without any additional empirical parameter. Further calculations using SPARC and COSMOtherm for partitioning between water and other tar-components (e.g., benzofuran, phenol and quinoline) suggested that minor components in coal tar do not significantly influence KCT/w of nonpolar solutes, and that Raoult's law and the SPLFER thus may be generally applied to these types of solutes, e.g., polycyclic aromatic hydrocarbons and alkylbenzenes, regardless of coal tar compositions. In contrast, partitioning of H-bonding solutes (e.g., phenols) can significantly vary depending on the amount of polar tar-components such as N-heterocyclic aromatic compounds. Therefore, the presented successful applications of Raoult's law and SPLFER to the studied coal tar could be a special case, and these simple approaches may not provide reasonable estimations for partitioning of H-bonding solutes from compositionally different coal tars.


Asunto(s)
Alquitrán/química , Solventes/química , Agua de Alquitrán/química , Agua/química , Enlace de Hidrógeno , Breas/química
18.
mBio ; 8(3)2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28536287

RESUMEN

Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria, a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity.IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight into what might make the clay antibacterial. Our analyses suggest that the deposit contains a surprising diversity of bacteria, which live in at least three distinct environments. In addition, the clay harbors bacteria that may have interesting potential as biocontrol/bioremediation agents or producers of novel bioactive compounds.


Asunto(s)
Silicatos de Aluminio , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Sedimentos Geológicos/microbiología , Bacterias/genética , Colombia Británica , Arcilla , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Chemosphere ; 111: 427-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24997948

RESUMEN

Clinoptilolite, a natural zeolite, is capable of removing heavy metals from acid rock drainage (ARD). Previous studies have neglected the dealumination of clinoptilolite and its impact during remediation. This study observed the dealumination of clinoptilolite during ARD remediation in a slurry bubble column (SBC), and investigated its impact on the capture of zinc. Uptake tests were performed with natural ARD and various sorbent average particle diameters from 300 to 1400µm, superficial gas velocities from 0.08 to 0.23ms(-1), initial aqueous pH from 2 to 6, Zn concentrations from 15 to 215ppm and sorbent/solution mass ratios from 25 to 400gkg(-1) to test zinc uptake. Dealumination of clinoptilolite was sometimes observed during the uptake process. Increased Al in the aqueous phase led to co-precipitation of Zn-Al colloid, enhanced by abundant sulfate in solution. The unit zinc uptake of the Al colloid was found to be much higher than for the raw clinoptilolite.


Asunto(s)
Zeolitas/química , Zinc/química , Adsorción , Aluminio/química , Aluminio/aislamiento & purificación , Precipitación Química , Coloides/química , Gases/química , Concentración de Iones de Hidrógeno , Hidrólisis , Modelos Teóricos , Tamaño de la Partícula , Sulfatos/química , Zinc/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA