RESUMEN
Superconductivity in a highly correlated kagome system has been theoretically proposed for years (refs. 1-5), yet the experimental realization is hard to achieve6,7. The recently discovered vanadium-based kagome materials8, which exhibit both superconductivity9-11 and charge-density-wave orders12-14, are nonmagnetic8,9 and weakly correlated15,16. Thus these materials are unlikely to host the exotic superconductivity theoretically proposed. Here we report the discovery of a chromium-based kagome metal, CsCr3Sb5, which is contrastingly featured with strong electron correlations, frustrated magnetism and characteristic flat bands close to the Fermi level. Under ambient pressure, this kagome metal undergoes a concurrent structural and magnetic phase transition at 55 K, with a stripe-like 4a0 structural modulation. At high pressure, the phase transition evolves into two transitions, possibly associated with charge-density-wave and antiferromagnetic spin-density-wave orderings. These density-wave-like orders are gradually suppressed with pressure and, remarkably, a superconducting dome emerges at 3.65-8.0 GPa. The maximum of the superconducting transition temperature, Tcmax = 6.4 K, appears when the density-wave-like orders are completely suppressed at 4.2 GPa, and the normal state exhibits a non-Fermi-liquid behaviour, reminiscent of unconventional superconductivity and quantum criticality in iron-based superconductors17,18. Our work offers an unprecedented platform for investigating superconductivity in correlated kagome systems.
RESUMEN
Euglenids have long been studied due to their unique physiology and versatile metabolism, providing underpinnings for much of our understanding of photosynthesis and biochemistry, and a growing opportunity in biotechnology. Until recently there has been a lack of genetic studies due to their large and complex genomes, but recently new technologies have begun to unveil their genetic capabilities. Whilst much research has focused on the model organism Euglena gracilis, other members of the euglenids have now started to receive due attention. Currently only poor nuclear genome assemblies of E. gracilis and Rhabdomonas costata are available, but there are many more plastid genome sequences and an increasing number of transcriptomes. As more assemblies become available, there are great opportunities to understand the fundamental biology of these organisms and to exploit them for biotechnology.
RESUMEN
Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.
Asunto(s)
Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/análisis , Caenorhabditis elegans/genética , Ingeniería Genética/métodos , Genoma de los Helmintos , Factores de Transcripción/análisis , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción/genéticaRESUMEN
As one of the most compact electrochemical energy storage systems, lithium-ion batteries (LIBs) are playing an indispensable role in the process of vehicle electrification to accelerate the shift to sustainable mobility. Making battery electrodes thicker is a promising strategy for improving the energy density of LIBs which is essential for applications with weight or volume constraints, such as electric-powered transportation; however, their power densities are often significantly restricted due to elongated and tortuous charge traveling distances. Here, we propose an effective methodology that couples bidirectional freeze-casting and compression-induced densification to create densified vertically lamellar electrode architectures for compact energy storage. The vertically lamellar architectures not only overcome the critical thickness limit for conventional electrodes but also facilitate and redistribute the lithium-ion flux enabling both high rate capability and stable cyclability. Furthermore, this proposed methodology is universal as demonstrated in various electrochemical active material systems. This study offers a facile approach that realizes simultaneous high energy and high power in high-loading battery electrodes and provides useful rationales in designing electrode architectures for scalable energy storage systems.
RESUMEN
Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.
Asunto(s)
Corteza Prefrontal , Receptor EphB2 , Conducta Social , Animales , Ratones , Encéfalo , Neuronas/fisiología , Corteza Prefrontal/fisiología , Receptor EphB2/genética , Receptor EphB2/fisiologíaRESUMEN
Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.
Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Hipertensión , Núcleo Hipotalámico Paraventricular , Ratas Endogámicas SHR , Sistema Nervioso Simpático , Animales , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Masculino , Hipertensión/fisiopatología , Hipertensión/metabolismo , Ratas , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Ratas Endogámicas WKY , Ratas Sprague-DawleyRESUMEN
Genome-wide association studies (GWAS) have led to rapid growth in detecting genetic variants associated with various phenotypes. Owing to a great number of publicly accessible GWAS summary statistics, and the difficulty in obtaining individual-level genotype data, many existing gene-based association tests have been adapted to require only GWAS summary statistics rather than individual-level data. However, these association tests are restricted to unrelated individuals and thus do not apply to family samples directly. Moreover, due to its flexibility and effectiveness, the linear mixed model has been increasingly utilized in GWAS to handle correlated data, such as family samples. However, it remains unknown how to perform gene-based association tests in family samples using the GWAS summary statistics estimated from the linear mixed model. In this study, we show that, when family size is negligible compared to the total sample size, the diagonal block structure of the kinship matrix makes it possible to approximate the correlation matrix of marginal Z scores by linkage disequilibrium matrix. Based on this result, current methods utilizing summary statistics for unrelated individuals can be directly applied to family data without any modifications. Our simulation results demonstrate that this proposed strategy controls the type 1 error rate well in various situations. Finally, we exemplify the usefulness of the proposed approach with a dental caries GWAS data set.
Asunto(s)
Caries Dental , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Modelos Genéticos , FenotipoRESUMEN
Gastric cancer (GC) is one of the most heterogeneous tumors. However, research on normal tissue adjacent to the tumor (NAT) is very limited. We performed multi-regional omics sequencing on 150 samples to assess the genetic basis and immune microenvironment in NAT and matched primary tumor or lymph node metastases. NATs demonstrated different mutated genes compared with GC, and NAT genomes underwent independent evolution with low variant allele frequency. Mutation profiles were predominated by aging and smoking-associated signatures in NAT instead of signatures associated with genetic instability. Although the immune microenvironment within NATs shows substantial intra-patient heterogeneity, the proportion of shared TCR clones among NATs is five times higher than that of tumor regions. These findings support the notion that subclonal expansion is not pronounced in NATs. We also demonstrated remarkable intra-patient heterogeneity of GCs and revealed heterogeneity of focal amplification of CD274 (encoding PD-L1) that leads to differential expression. Finally, we identified that monoclonal seeding is predominant in GC, which is followed by metastasis-to-metastasis dissemination in individual lymph nodes. These results provide novel insights into GC carcinogenesis. © 2024 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Antígeno B7-H1 , Mutación , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Antígeno B7-H1/genética , Heterogeneidad Genética , Metástasis Linfática , Masculino , Femenino , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/genéticaRESUMEN
The role of radiosurgery in preventing haemorrhage in brainstem cavernous malformations remains a subject of debate. This study aims to evaluate whether radiosurgery provides a protective benefit against haemorrhage in these patients. This multicentre, prospective observational study was conducted in 17 centres and enrolled eligible patients with brainstem cavernous malformations consecutively. Data collected included clinical baseline information, radiosurgery planning details, periodic follow-up evaluations, and any adverse radiation effects. The primary outcome of the study was the incidence of first prospective haemorrhage, while the secondary outcome was the development of new or worsening neurological dysfunctions. The impact of radiosurgery was assessed using multivariate Cox regression analysis. From March 2016 to August 2018, the study enrolled 377 patients: 280 in the observation group receiving standard care alone and 97 in the radiosurgery group receiving both radiosurgery and standard care. The overall cohort consisted of 173 females (45.9%) with a mean age of 40.5 years (range, 18-68 years), and there were no significant differences in baseline characteristics between the two groups. After a median follow-up period of 70 months, haemorrhage occurred in 25.0% (n = 70) of patients in the observation group and 10.3% (n = 10) of patients in the radiosurgery group. Multivariate Cox regression analysis identified radiosurgery as an independent protective factor against haemorrhage (hazard ratio 0.379, 95% confidence interval 0.195-0.738, P = 0.004). Following 1:2 propensity score matching, the incidence of prospective haemorrhage were 24.9% (45/181) in the observation group compared to 10.3% (10/97) in the radiosurgery group (hazard ratio 0.379, 95% confidence interval 0.190-0.755, P = 0.006). Adverse radiation effects were observed in 12 patients (12.4%), with none were permanent. Additionally, new or worsening neurological dysfunctions were significantly more common in the observation group (28.9%) compared to the radiosurgery group (16.5%) (P = 0.016). These results suggest that radiosurgery is associated with a low rate of haemorrhage in patients with brainstem cavernous malformations and could provide a benefit in selected patients. However, further research is required to confirm these findings.
RESUMEN
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and recent epidemiological studies suggested type 2 diabetes mellitus (T2DM) is an independent risk factor for the development of AF. Zinc finger and BTB (broad-complex, tram-track and bric-a-brac) domain containing 16 (Zbtb16) serve as transcriptional factors to regulate many biological processes. However, the potential effects of Zbtb16 in AF under T2DM condition remain unclear. Here, we reported that db/db mice displayed higher AF vulnerability and Zbtb16 was identified as the most significantly enriched gene by RNA sequencing (RNA-seq) analysis in atrium. In addition, thioredoxin interacting protein (Txnip) was distinguished as the key downstream gene of Zbtb16 by Cleavage Under Targets and Tagmentation (CUT&Tag) assay. Mechanistically, increased Txnip combined with thioredoxin 2 (Trx2) in mitochondrion induced excess reactive oxygen species (ROS) release, calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation, and spontaneous Ca2+ waves (SCWs) occurrence, which could be inhibited through atrial-specific knockdown (KD) of Zbtb16 or Txnip by adeno-associated virus 9 (AAV9) or Mito-TEMPO treatment. High glucose (HG)-treated HL-1 cells were used to mimic the setting of diabetic in vitro. Zbtb16-Txnip-Trx2 signaling-induced excess ROS release and CaMKII activation were also verified in HL-1 cells under HG condition. Furthermore, atrial-specific Zbtb16 or Txnip-KD reduced incidence and duration of AF in db/db mice. Altogether, we demonstrated that interrupting Zbtb16-Txnip-Trx2 signaling in atrium could decrease AF susceptibility via reducing ROS release and CaMKII activation in the setting of T2DM.
Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Portadoras/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Especies Reactivas de Oxígeno , Tiorredoxinas/genéticaRESUMEN
BACKGROUND AND AIMS: Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS: Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS: HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS: FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.
Asunto(s)
Proteínas de Unión a Ácidos Grasos , Hígado Graso , Trasplante de Hígado , Daño por Reperfusión , Animales , Ratones , Biomarcadores , Proteínas de Unión a Ácidos Grasos/genética , Hígado Graso/cirugía , Hipoxia , Hígado/metabolismo , Multiómica , Proteómica , Daño por Reperfusión/metabolismo , Transaminasas/metabolismoRESUMEN
As one of the prevailing energy storage systems, lithium-ion batteries (LIBs) have become an essential pillar in electric vehicles (EVs) during the past decade, contributing significantly to a carbon-neutral future. However, the complete transition to electric vehicles requires LIBs with yet higher energy and power densities. Here, we propose an effective methodology via controlled nanosheet self-assembly to prepare low-tortuosity yet high-density and high-toughness thick electrodes. By introducing a delicate densification in a three-dimensionally interconnected nanosheet network to maintain its vertical architecture, facile electron and ion transports are enabled despite their high packing density. This dense and thick electrode is capable of delivering a high volumetric capacity >1,600 mAh cm-3, with an areal capacity up to 32 mAh cm-2, which is among the best reported in the literature. The high-performance electrodes with superior mechanical and electrochemical properties demonstrated in this work provide a potentially universal methodology in designing advanced battery electrodes with versatile anisotropic properties.
RESUMEN
SignificanceQuantum coherence has a fundamentally different origin for nonidentical and identical particles since for the latter a unique contribution exists due to indistinguishability. Here we experimentally show how to exploit, in a controllable fashion, the contribution to quantum coherence stemming from spatial indistinguishability. Our experiment also directly proves, on the same footing, the different role of particle statistics (bosons or fermions) in supplying coherence-enabled advantage for quantum metrology. Ultimately, our results provide insights toward viable quantum-enhanced technologies based on tunable indistinguishability of identical building blocks.
RESUMEN
Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.
Asunto(s)
Altitud , Ácido Clorogénico , Metaboloma , Solanum tuberosum , Transcriptoma , Solanum tuberosum/metabolismo , Solanum tuberosum/genética , Ácido Clorogénico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pigmentación/genéticaRESUMEN
The first dikaryotic genome of Ganoderma cultivar Zizhi S2 (56.76 Mb, 16,681 genes) has been sequenced recently. 98.15% of complete BUSCOs were recovered in this genome assembly and high-confidence annotation rate improved to 91.41%. Collinearity analysis displayed the nuclear genome were 80.2% and 93.84% similar to reference genome of G. sinense at nucleotide and amino acid levels, which presented 8,521 core genes and 880 unique orthologous gene groups. Among that, at least six functional genes (tef1-α, ß-tubulin, rpb2, CaM, Mn-SOD and VeA) and a newly discovered fip gene were highly similar 99.27% â¼100% to those in reference genome. And the mt-LSU, mt-SSU and 13 PCGs in their mitogenome were also highly conserved with 99.27%-99.87% and 99.08%-100% identity, respectively. So that, this cultivar Zizhi S2 is confirmed conspecific with Ganoderma sinense (NCBI: txid1077348). The new fip gene (MN635280.1_336bp) existing a novel mutation which can be reflected on the phylogenetic tree and 3-dimensional model topology structure.
Asunto(s)
Ganoderma , Filogenia , Ganoderma/genética , Genómica , Genoma Fúngico , Proteínas Fúngicas/genéticaRESUMEN
The lattice parameter of platinum-based intermetallic compounds (IMCs), which correlates with the intrinsic activity of the oxygen reduction reaction (ORR), can be modulated by crystal phase engineering. However, the controlled preparation of IMCs with unconventional crystal structures remains highly challenging. Here, we demonstrate the synthesis of carbon-supported PtCu-based IMC catalysts with an unconventional L10 structure by a composition-regulated strategy. Experiment and machine learning reveal that the thermodynamically favorable structure changes from L11 to L10 when slight Cu atoms are substituted with Co. Benefiting from crystal-phase-induced strain enhancement, the prepared L10-type PtCu0.8Co0.2 catalyst exhibits much-enhanced mass and specific activities of 1.82 A mgPt-1 and 3.27 mA cmPt-2, which are 1.91 and 1.73 times higher than those of the L11-type PtCu catalyst, respectively. Our work highlights the important role of crystal phase in determining the surface strain of IMCs, and opens a promising avenue for the rational preparation of IMCs with different crystal phases by doping.
RESUMEN
Eukaryotic messenger RNAs (mRNAs) are often modified with methyl groups at the N6 position of adenosine (m6A), and these changes are interpreted by YTH domain-containing proteins to regulate the metabolism of m6A-modified mRNAs. Although alfalfa (Medicago sativa) is an established model organism for forage development, the understanding of YTH proteins in alfalfa is still limited. In the present investigation, 53 putative YTH genes, each encoding a YT521 domain-containing protein, were identified within the alfalfa genome. These genes were categorized into two subfamilies: YTHDF (49 members) and YTHDC (four members). Each subfamily demonstrates analogous motif distributions and domain architectures. Specifically, proteins encoded by MsYTHDF genes incorporate a single domain structure, while those corresponding to MsYTH5, 8, 12, 16 who are identified as members of the MsYTHDC subfamily, exhibit CCCH-type zinc finger repeats at their N-termini. It is also observed that the predicted aromatic cage pocket that binds the m6A residue of MsYTHDC consists of a sequence of two tryptophan residues and one tyrosine residue (WWY). Conversely, in MsYTHDF, the binding pocket comprises two highly conserved tryptophan residues and either one tryptophan residue (WWW) or tyrosine residue (WWY) in MsYTHDF.Through comparative analysis of qRT-PCR data, we observed distinct expression patterns in specific genes under abiotic stress, indicating their potential regulatory roles. Notably, five genes (MsYTH2, 14, 26, 27, 48) consistently exhibit upregulation, and two genes (MsYTH33, 35) are downregulated in response to both cold and salt stress. This suggests a common mechanism among these YTH proteins in response to various abiotic stressors in alfalfa. Further, integrating qRT-PCR with RNA-seq data revealed that MsYTH2, MsYTH14, and MsYTH16 are highly expressed in leaves at various development stages, underscoring their potential roles in regulating the growth of these plant parts. The obtained findings shed further light on the biological functions of MsYTH genes and may aid in the selection of suitable candidate genes for future genetic enhancement endeavors aimed at improving salt and cold tolerance in alfalfa.
Asunto(s)
Medicago sativa , Triptófano , Medicago sativa/genética , Triptófano/genética , Triptófano/metabolismo , ARN Mensajero/metabolismo , Tirosina/metabolismo , Regulación de la Expresión Génica de las Plantas , FilogeniaRESUMEN
Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of pfkfb3 attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.