Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335756

RESUMEN

In order to find effective α-glucosidase inhibitors, a series of thiazolidine-2,4-dione derivatives (C1 âˆ¼ 36) were synthesized and evaluated for α-glucosidase inhibitory activity. Compared to positive control acarbose (IC50 = 654.35 ± 65.81 µM), all compounds (C1 âˆ¼ 36) showed stronger α-glucosidase inhibitory activity with IC50 values of 0.52 ± 0.06 âˆ¼ 9.31 ± 0.96 µM. Among them, C23 with the best anti-α-glucosidase activity was a reversible mixed-type inhibitor. Fluorescence quenching suggested the binding process of C23 with α-glucosidase in a static process. Fluorescence quenching, CD spectra, and 3D fluorescence spectra results also implied that the binding of C23 with α-glucosidase caused the conformational change of α-glucosidase to inhibit the activity. Molecular docking displayed the binding interaction of C23 with α-glucosidase. Compound C23 (8 âˆ¼ 64 µM) showed no cytotoxicity against LO2 and 293 cells. Moreover, oral administration of C23 (50 mg/kg) could reduce blood glucose and improve glucose tolerance in mice.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Tiazolidinedionas , Ratones , Animales , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/química , Estructura Molecular , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Tiazolidinas
2.
Bioorg Chem ; 143: 106985, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007892

RESUMEN

A series of chromone derivatives bearing thiazolidine-2,4-dione moiety (5 âˆ¼ 37) were synthesized and evaluated for their PTP1B inhibitory activity, interaction analysis and effects on insulin pathway in palmitic acid (PA)-induced HepG2 cells. The results showed that all derivatives presented potential PTP1B inhibitory activity with IC50 values of 1.40 ± 0.04 âˆ¼ 16.83 ± 0.54 µM comparing to that of positive control lithocholic acid (IC50: 9.62 ± 0.14 µM). Among them, compound 9 had the strongest PTP1B inhibitory activity with the IC50 value of 1.40 ± 0.04 µM. Inhibition kinetic study revealed that compound 9 was a reversible mixed-type inhibitor against PTP1B. CD spectra results confirmed that compound 9 changed the secondary structure of PTP1B by their interaction. Molecular docking explained the detailed binding between compound 9 and PTP1B. Compound 9 also showed 19-fold of selectivity for PTP1B over TCPTP. Moreover compound 9 could recovery PA-induced insulin resistance by increasing the phosphorylation of IRSI and AKT. CETSA results showed that compound 9 significantly increased the thermal stability of PTP1B.


Asunto(s)
Inhibidores Enzimáticos , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Tiazolidinedionas , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazolidinas , Inhibidores Enzimáticos/química , Diseño de Fármacos , Ácido Palmítico/farmacología
3.
Bioorg Chem ; 142: 106937, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913583

RESUMEN

Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacología , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , FN-kappa B/metabolismo , Apoptosis , Proliferación Celular
4.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38234133

RESUMEN

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Asunto(s)
Artritis Reumatoide , Diterpenos , Orthosiphon , Humanos , Orthosiphon/química , Orthosiphon/metabolismo , Abietanos , Artritis Reumatoide/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Diterpenos/farmacología , Diterpenos/química , FN-kappa B/metabolismo
5.
Nat Mater ; 21(12): 1357-1365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357689

RESUMEN

The hygroscopic deformation of pine cones, featured by opening and closing their scales depending on the environmental humidity, is a well-known stimuli-responsive model system for artificial actuators. However, it has not been noted that the deformation of pine cones is an ultra-slow process. Here, we reveal that vascular bundles with unique parallelly arranged spring/square microtubular heterostructures dominate the hygroscopic movement, characterized as ultra-slow motion with the outer sclereids. The spring microtubes give a much larger hygroscopic deformation than that of the square microtubes along the longitudinal axis direction, which bends the vascular bundles and consequently drives the scales to move. The outer sclereids with good water retention enable the vascular-bundle-triggered deformation to proceed ultra-slowly. Drawing inspiration, we developed soft actuators enabling controllable yet unperceivable motion. The motion velocity is almost two orders of magnitude lower than that of the same-class actuators reported, which made the as-developed soft actuators applicable in camouflage and reconnaissance.


Asunto(s)
Movimiento , Cono de Planta , Humectabilidad , Modelos Biológicos
6.
J Org Chem ; 88(16): 12054-12063, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37507345

RESUMEN

A palladium catalyzed annulation of o-iodo-anilines with propargyl alcohols for the synthesis of substituted quinolines has been developed. The reaction tolerates diverse functional groups under mild conditions, providing direct access to 2,4-disubstituted quinolines from easily available starting materials. A broad range of 2,4-disubstituted quinolines were efficiently prepared in good to excellent yields.

7.
J Org Chem ; 88(13): 8379-8386, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37312277

RESUMEN

Efficient access to the synthesis of lactam-derived quinoline through a bicyclic amidine-triggered cyclization reaction from readily prepared o-alkynylisocyanobenzenes has been developed. The reaction was initiated by nucleophilic attack of the bicyclic amidines to o-alkynylisocyanobenzenes, subsequently with intramolecular cyclization to produce a DBU-quinoline-based amidinium salt, followed by hydrolysis to afford the lactam-derived quinoline in moderate to good yields.


Asunto(s)
Lactamas , Quinolinas , Ciclización , Amidinas , Hidrólisis
8.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 150-154, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953571

RESUMEN

To provide clinical evidence for the management of hypoxic-ischemic encephalopathy (HIE) by analyzing the role of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and colony-stimulating factor-1 (CSF1) in the disease. We purchased 15 Sprague-Dawley (SD) rat pups and randomized them into five groups (n=3), of which one group was untreated as the control group and the other four were modeled by HIE. After modeling, a group was treated as a model group without any treatment, another group was injected with sLOX-1-silencing lentiviral vector (sLOX-1-si group), and the third and fourth were injected with CSF1-silencing lentiviral vector (CSF1-si group) and an equal amount of normal saline (blank group), respectively. After the corresponding intervention, the rat tissue in each group was obtained to observe the pathological injury by HE and TUNEL staining. In addition, sLOX-1, CSF1, 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) levels in brain tissue of each group were determined. The model group showed more severe pathological damage of the hippocampus and higher neuronal apoptosis than the control group. Besides, higher sLOX-1 and CSF1 levels and lower 5-HT, DA and NE contents were identified in the model group versus the control group (P<0.05). Compared with the blank group, sLOX-1-si and CSF1-si groups showed significantly alleviated hippocampal damage, inhibited neuronal apoptosis, reduced 5-HT, DA, NE, Bax, and cl-caspase-3, and increased Bcl-2 (P<0.05). Silencing sLOX-1 and CSF1 expression ameliorated the pathological injury of HIE and inhibited neuronal apoptosis.


Asunto(s)
Hipoxia-Isquemia Encefálica , Ratas , Animales , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Animales Recién Nacidos , Ratas Sprague-Dawley , Serotonina , Apoptosis , Receptores Depuradores de Clase E
9.
Molecules ; 28(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630220

RESUMEN

Tyrosinase plays crucial roles in mediating the production of melanin pigment; thus, its inhibitors could be useful in preventing melanin-related diseases. To find potential tyrosinase inhibitors, a series of cinnamic acid-eugenol esters (c1~c29) was synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, HRMS, and FT-IR, respectively. The biological evaluation results showed that all compounds c1~c29 exhibited definite tyrosinase inhibitory activity; especially, compound c27 was the strongest tyrosinase inhibitor (IC50: 3.07 ± 0.26 µM), being ~4.6-fold stronger than the positive control, kojic acid (IC50: 14.15 ± 0.46 µM). Inhibition kinetic studies validated compound c27 as a reversible mixed-type inhibitor against tyrosinase. Three-dimensional fluorescence and circular dichroism (CD) spectra results indicated that compound c27 could change the conformation and secondary structure of tyrosinase. Fluorescence-quenching results showed that compound c27 quenched tyrosinase fluorescence in the static manner with one binding site. Molecular docking results also revealed the binding interactions between compound c27 and tyrosinase. Therefore, cinnamic acid-eugenol esters, especially c27, could be used as lead compounds to find potential tyrosinase inhibitors.


Asunto(s)
Eugenol , Melaninas , Eugenol/farmacología , Cinética , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Monofenol Monooxigenasa , Ésteres/farmacología
10.
Molecules ; 28(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446942

RESUMEN

To find potential α-glucosidase inhibitors, indolo[1,2-b]isoquinoline derivatives (1-20) were screened for their α-glucosidase inhibitory effects. All derivatives presented potential α-glucosidase inhibitory effects with IC50 values of 3.44 ± 0.36~41.24 ± 0.26 µM compared to the positive control acarbose (IC50 value: 640.57 ± 5.13 µM). In particular, compound 11 displayed the strongest anti-α-glucosidase activity, being ~186 times stronger than acarbose. Kinetic studies found that compounds 9, 11, 13, 18, and 19 were all reversible mix-type inhibitors. The 3D fluorescence spectra and CD spectra results revealed that the interaction between compounds 9, 11, 13, 18, and 19 and α-glucosidase changed the conformational changes of α-glucosidase. Molecular docking and molecular dynamics simulation results indicated the interaction between compounds and α-glucosidase. In addition, cell cytotoxicity and drug-like properties of compound 11 were also investigated.


Asunto(s)
Acarbosa , alfa-Glucosidasas , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Cinética , Inhibidores de Glicósido Hidrolasas/farmacología , Isoquinolinas
11.
Molecules ; 28(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005192

RESUMEN

Tyrosinase is an important rate-limiting enzyme in melanin biosynthesis. To find potential tyrosinase inhibitors with anti-melanogenic activity, a series of indole-thiazolidine-2,4-dione derivatives 5a~5z were synthesized by incorporating indole with thiazolidine-2,4-dione into one compound and assayed for their biological activities. All compounds displayed tyrosinase inhibitory activities and 5w had the highest anti-tyrosinase inhibitory activity with an IC50 value of 11.2 µM. Inhibition kinetics revealed 5w as a mixed-type tyrosinase inhibitor. Fluorescence quenching results indicated that 5w quenched tyrosinase fluorescence in a static process. CD spectra and 3D fluorescence spectra results suggested that the binding of 5w with tyrosinase could change the conformation and microenvironment of tyrosinase. Molecular docking also represented the binding between 5w and tyrosinase. Moreover, 5w could inhibit tyrosinase activity and melanogenesis both in B16F10 cells and the zebrafish model. Therefore, compound 5w could serve as a tyrosinase inhibitor with anti-melanogenic activity.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Animales , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Pez Cebra/metabolismo , Indoles/farmacología , Melaninas
12.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110629

RESUMEN

Naproxen is widely used for anti-inflammatory treatment but it can lead to serious side effects. To improve the anti-inflammatory activity and safety, a novel naproxen derivative containing cinnamic acid (NDC) was synthesized and used in combination with resveratrol. The results showed that the combination of NDC and resveratrol at different ratios have a synergistic anti-inflammatory efficacy in RAW264.7 macrophage cells. It was indicated that the combination of NDC and resveratrol at a ratio of 2:1 significantly inhibited the expression of carbon monoxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and reactive oxygen species (ROS) without detectable side effects on cell viability. Further studies revealed that these anti-inflammatory effects were mediated by the activation of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) signaling pathways, respectively. Taken together, these results highlighted the synergistic NDC and resveratrol anti-inflammatory activity that could be further explored as a strategy for the treatment of inflammatory disease with an improved safety profile.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Resveratrol/farmacología , Naproxeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Antiinflamatorios/farmacología , Células RAW 264.7 , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Ciclooxigenasa 2/metabolismo
13.
Small ; 18(41): e2203264, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070429

RESUMEN

Superhydrophobic surfaces with the "lotus effect" have wide applications in daily life and industry, such as self-cleaning, anti-freezing, and anti-corrosion. However, it is difficult to reliably predict whether a designed superhydrophobic surface has the "lotus effect" by traditional theoretical models due to complex surface topographies. Here, a reliable machine learning (ML) model to accurately predict the "lotus effect" of solid surfaces by designing a set of descriptors about nano-scale roughness and micro-scale topographies in addition to the surface hydrophobic modification is demonstrated. Geometrical and mathematical descriptors combined with gray level cooccurrence matrices (GLCM) offer a feasible solution to the puzzle of accurate descriptions of complex topographies. Furthermore, the "black box" is opened by feature importance and Shapley-additive-explanations (SHAP) analysis to extract waterdrop adhesion trends on superhydrophobic surfaces. The accurate prediction on as-fabricated superhydrophobic surfaces strongly affirms the extensionality of the ML model. This approach can be easily generalized to screen solid surfaces with other properties.


Asunto(s)
Aprendizaje Automático , Modelos Teóricos , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
14.
Toxicol Appl Pharmacol ; 452: 116169, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926565

RESUMEN

PURPOSE: Our previous studies have confirmed that aspirin combined with Lipitor inhibited the development of prostate cancer (PCa), but the mechanisms need to be comprehensively expounded. The study aims to screen out the hub genes of combination therapy and to explore their association with the pathogenesis and prognosis of PCa. METHODS: Gene expressions were quantified by RNA sequencing (RNA-seq). Altered biological function, pathways of differentially expressed genes (DEGs), protein-protein interaction network, the filtering of hub genes, gene co-expression and the pathogenesis and prognosis were revealed by bioinformatics analysis. The correlation between hub gene expression and patient survival was validated by Kaplan-Meier. The effects of silent DNA replication and sister chromatid cohesion 1 (siDSCC1) combined with Lipitor and aspirin on DSCC1 expression, viability, invasion and migration of PCa cells were detected by qRT-PCR, Wound healing and transwell assays. RESULTS: 157 overlapped DEGs involved in FoxO, PI3K-Akt and p53 signaling pathways were identified. Ten hub genes (NEIL3, CDC7, DSCC1, CDC25C, PRIM1, MCM10, FBXO5, DTL, SERPINE1, EXO1) were verified to be correlated with the pathology and prognosis of PCa. DSCC1 silencing not only inhibited the viability, migration and invasion of PCa cells, but also strengthened the suppressing effects of Lipitor and aspirin alone or in combination on PCa cells. CONCLUSION: The enrichment pathways and targets of Lipitor combined with aspirin in PCa are discovered, and DSCC1 silencing can potentiate the effect of Lipitor combined with aspirin in the treatment of PCa.


Asunto(s)
Biología Computacional , Neoplasias de la Próstata , Aspirina/farmacología , Aspirina/uso terapéutico , Atorvastatina , Proteínas de Ciclo Celular/metabolismo , ADN Primasa/genética , ADN Primasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas
15.
J Enzyme Inhib Med Chem ; 37(1): 451-461, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35012401

RESUMEN

Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.HighlightsOleanolic acid oxime ester derivatives (3a-3t) were synthesised and screened against α-glucosidase and α-amylase.Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ésteres/farmacología , Ácido Oleanólico/farmacología , Oximas/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ésteres/síntesis química , Ésteres/química , Humanos , Estructura Molecular , Ácido Oleanólico/síntesis química , Ácido Oleanólico/química , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad , alfa-Amilasas/metabolismo
16.
J Am Chem Soc ; 143(38): 15599-15605, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34533943

RESUMEN

An electrochemical asymmetric coupling of secondary acyclic amines with ketones via a Shono-type oxidation has been described, affording the corresponding amino acid derivatives with good to excellent diastereoselectivity and enantioselectivity. The addition of an N-oxyl radical as a redox mediator could selectively oxidize the substrate rather than the product, although their oxidation potential difference is subtle (about 13 mV). This electrochemical transformation proceeds in the absence of stoichiometric additives, including metals, oxidants, and electrolytes, which gives it good functional group compatibility. Mechanistic studies suggest that proton-mediated racemization of the product is prevented by the reduction of protons at the cathode.

17.
J Org Chem ; 86(9): 6075-6089, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33820419

RESUMEN

Herein, we describe a highly effective 1,8-conjugate-addition-mediated formal (3+3)-annulation of (aza)-para-quinone methides in situ generated from propargylic alcohols with 4-hydroxycoumarins and 1,3-dicarbonyl compounds under the catalysis of a Brønsted acid. This methodology affords efficient and practical access to synthetically important and highly functionalized pyranocoumarins and pyrans in excellent yields under mild conditions. Importantly, these products exhibit impressive inhibitory activity toward α-glucosidase.


Asunto(s)
4-Hidroxicumarinas , Catálisis , Indolquinonas , Estructura Molecular , Estereoisomerismo
18.
Bioorg Chem ; 116: 105291, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34438122

RESUMEN

In this study, twenty novel cinnamic acid magnolol derivatives were synthesized, and screened for their anti-hyperglycemic potential. All synthesized compounds exhibited good to moderate α-glucosidase and α-amylase inhibitory activities with IC50 values: 5.11 ± 1.46-90.26 ± 1.85 µM and 4.27 ± 1.51-49.28 ± 2.54 µM as compared to the standard acarbose (IC50: 255.44 ± 1.89 µM and 80.33 ± 2.95 µM, respectively). Compound 6j showed the strongest inhibitory activity against α-glucosidase (IC50 = 5.11 ± 1.46 µM) and α-amylase (IC50 = 4.27 ± 1.51 µM). Kinetic study indicated that compound 6j was reversible and a mixed type inhibitor against α-glucosidase and α-amylase. In silico studies revealed the binding interaction between 6j and two enzymes, respectively. Finally, cells cytotoxicity assay revealed that compound 6j showed low toxicity against 3 T3-L1 cells and HepG2 cells.


Asunto(s)
Compuestos de Bifenilo/farmacología , Cinamatos/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Lignanos/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Cinamatos/síntesis química , Cinamatos/química , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Lignanos/síntesis química , Lignanos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , alfa-Amilasas/metabolismo
19.
Bioorg Chem ; 107: 104580, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33418317

RESUMEN

Research efforts have been directed to the development of oleanolic acid (OA) based α-glucosidase inhibitors and various OA derivatives showed improved anti-α-glucosidase activity. However, the inhibitory effects of indole infused OA derivatives on α-glucosidase is unknown. Herein, we synthesized a series of indole-OA (2a-2o) and -OA methyl ester (3a-3 l) derivatives with various electron withdrawing groups inducted to indole benzene ring and evaluated their anti-α-glucosidase activity. Indole OA derivatives (2a-2o) exhibited superior α-glucosidase inhibitory effects as compared to OA methyl ester derivatives (3a-3l) and OA (with IC50 values of 4.02 µM-5.30 µM v.s. over 10 µM and 5.52 µM, respectively). In addition, mechanistic studies using biochemical (kinetic assay), biophysical (circular dichroism), and computational (docking) methods revealed that OA-indole derivatives (2a and 2f) are mixed type of α-glucosidase inhibitors and their inhibitory effects were attributed to their capacity of forming the ligand-enzyme complex with α-glucosidase enzyme. Findings from this study support that OA indole derivatives are promising α-glucosidase inhibitors as a potential management of diabetes mellitus.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Ácido Oleanólico/farmacología , alfa-Glucosidasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Ácido Oleanólico/síntesis química , Ácido Oleanólico/química , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
20.
Bioorg Chem ; 109: 104692, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626454

RESUMEN

A series of ursolic acid (UA), oleanolic acid (OA) and 18ß-glycyrrhetinic acid (GA) derivatives were synthesized by introducing a range of substituted aromatic side-chains at the C-2 position after the hydroxyl group at C-3 position was oxidized. Their antibacterial activities were evaluated in vitro against a panel of four Staphylococcus spp. The results revealed that the introduction of aromatic side-chains at the C-2 position of GA led to the discovery of potent triterpenoid derivatives for inhibition of both drug sensitive and resistant S. aureus, while the other two series derivatives of UA and OA showed no significant antibacterial activity even at high concentrations. In particular, GA derivative 33 showed good potency against all four Staphylococcus spp. (MIC = 1.25-5 µmol/L) with acceptable pharmacokinetics properties and low cytotoxicity in vitro. Molecular docking was also performed using S. aureus DNA gyrase to rationalize the observed antibacterial activity. This series of GA derivatives has strong potential for the development of a new type of triterpenoid antibacterial agent.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Diseño de Fármacos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Animales , Antibacterianos/síntesis química , Línea Celular , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Microglía , Modelos Moleculares , Estructura Molecular , Triterpenos Pentacíclicos/síntesis química , Ratas , Staphylococcus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA