Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Cogn Neurosci ; 35(5): 816-840, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877074

RESUMEN

Color and form information can be decoded in every region of the human ventral visual hierarchy, and at every layer of many convolutional neural networks (CNNs) trained to recognize objects, but how does the coding strength of these features vary over processing? Here, we characterize for these features both their absolute coding strength-how strongly each feature is represented independent of the other feature-and their relative coding strength-how strongly each feature is encoded relative to the other, which could constrain how well a feature can be read out by downstream regions across variation in the other feature. To quantify relative coding strength, we define a measure called the form dominance index that compares the relative influence of color and form on the representational geometry at each processing stage. We analyze brain and CNN responses to stimuli varying based on color and either a simple form feature, orientation, or a more complex form feature, curvature. We find that while the brain and CNNs largely differ in how the absolute coding strength of color and form vary over processing, comparing them in terms of their relative emphasis of these features reveals a striking similarity: For both the brain and for CNNs trained for object recognition (but not for untrained CNNs), orientation information is increasingly de-emphasized, and curvature information is increasingly emphasized, relative to color information over processing, with corresponding processing stages showing largely similar values of the form dominance index.


Asunto(s)
Corteza Visual , Vías Visuales , Humanos , Vías Visuales/fisiología , Corteza Visual/fisiología , Percepción Visual , Redes Neurales de la Computación , Encéfalo/fisiología
2.
J Vis ; 23(1): 3, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598454

RESUMEN

How do humans evaluate temporally accumulated discrete pieces of evidence and arrive at a decision despite the presence of conflicting evidence? In the present study, we showed human participants a sequential presentation of objects drawn from two novel object categories and asked them to decide whether a given presentation contained more objects from one or the other category. We found that both a more disparate ratio and greater numerosity of objects improved both reaction time (RT) and accuracy. The effect of numerosity was separate from ratio, where with a fixed object ratio, sequences with more total objects had lower RT and lower error rates than those with fewer total objects. We replicated these results across three experiments. Additionally, even with the total presentation duration equated and with the motor response assignment varied from trial to trial, an effect of numerosity was still found in RT. The same RT benefit was also present when objects were shown simultaneously, rather than sequentially. Together, these results showed that, for comparative numerosity judgment involving sequential displays, there was a benefit of numerosity, such that showing more objects independent of the object ratio and the total presentation time led to faster decision performance.


Asunto(s)
Juicio , Humanos , Juicio/fisiología , Tiempo de Reacción/fisiología
3.
J Neurosci ; 41(19): 4234-4252, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33789916

RESUMEN

A visual object is characterized by multiple visual features, including its identity, position and size. Despite the usefulness of identity and nonidentity features in vision and their joint coding throughout the primate ventral visual processing pathway, they have so far been studied relatively independently. Here in both female and male human participants, the coding of identity and nonidentity features was examined together across the human ventral visual pathway. The nonidentity features tested included two Euclidean features (position and size) and two non-Euclidean features (image statistics and spatial frequency (SF) content of an image). Overall, identity representation increased and nonidentity feature representation decreased along the ventral visual pathway, with identity outweighing the non-Euclidean but not the Euclidean features at higher levels of visual processing. In 14 convolutional neural networks (CNNs) pretrained for object categorization with varying architecture, depth, and with/without recurrent processing, nonidentity feature representation showed an initial large increase from early to mid-stage of processing, followed by a decrease at later stages of processing, different from brain responses. Additionally, from lower to higher levels of visual processing, position became more underrepresented and image statistics and SF became more overrepresented compared with identity in CNNs than in the human brain. Similar results were obtained in a CNN trained with stylized images that emphasized shape representations. Overall, by measuring the coding strength of object identity and nonidentity features together, our approach provides a new tool for characterizing feature coding in the human brain and the correspondence between the brain and CNNs.SIGNIFICANCE STATEMENT This study examined the coding strength of object identity and four types of nonidentity features along the human ventral visual processing pathway and compared brain responses with those of 14 convolutional neural networks (CNNs) pretrained to perform object categorization. Overall, identity representation increased and nonidentity feature representation decreased along the ventral visual pathway, with some notable differences among the different nonidentity features. CNNs differed from the brain in a number of aspects in their representations of identity and nonidentity features over the course of visual processing. Our approach provides a new tool for characterizing feature coding in the human brain and the correspondence between the brain and CNNs.


Asunto(s)
Red Nerviosa/fisiología , Redes Neurales de la Computación , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Lóbulo Occipital/diagnóstico por imagen , Reconocimiento Visual de Modelos , Estimulación Luminosa , Lóbulo Temporal/diagnóstico por imagen , Vías Visuales/fisiología , Adulto Joven
4.
J Neurosci ; 41(35): 7403-7419, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34253629

RESUMEN

In everyday life, we have no trouble categorizing objects varying in position, size, and orientation. Previous fMRI research shows that higher-level object processing regions in the human lateral occipital cortex may link object responses from different affine states (i.e., size and viewpoint) through a general linear mapping function capable of predicting responses to novel objects. In this study, we extended this approach to examine the mapping for both Euclidean (e.g., position and size) and non-Euclidean (e.g., image statistics and spatial frequency) transformations across the human ventral visual processing hierarchy, including areas V1, V2, V3, V4, ventral occipitotemporal cortex, and lateral occipitotemporal cortex. The predicted pattern generated from a linear mapping function could capture a significant amount of the changes associated with the transformations throughout the ventral visual stream. The derived linear mapping functions were not category independent as performance was better for the categories included than those not included in training and better between two similar versus two dissimilar categories in both lower and higher visual regions. Consistent with object representations being stronger in higher than in lower visual regions, pattern selectivity and object category representational structure were somewhat better preserved in the predicted patterns in higher than in lower visual regions. There were no notable differences between Euclidean and non-Euclidean transformations. These findings demonstrate a near-orthogonal representation of object identity and these nonidentity features throughout the human ventral visual processing pathway with these nonidentity features largely untangled from the identity features early in visual processing.SIGNIFICANCE STATEMENT Presently we still do not fully understand how object identity and nonidentity (e.g., position, size) information are simultaneously represented in the primate ventral visual system to form invariant representations. Previous work suggests that the human lateral occipital cortex may be linking different affine states of object representations through general linear mapping functions. Here, we show that across the entire human ventral processing pathway, we could link object responses in different states of nonidentity transformations through linear mapping functions for both Euclidean and non-Euclidean transformations. These mapping functions are not identity independent, suggesting that object identity and nonidentity features are represented in a near rather than a completely orthogonal manner.


Asunto(s)
Mapeo Encefálico , Lóbulo Occipital/fisiología , Reconocimiento Visual de Modelos/fisiología , Lóbulo Temporal/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Adolescente , Adulto , Animales , Reconocimiento Facial/fisiología , Femenino , Artículos Domésticos , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
5.
J Cogn Neurosci ; 34(12): 2406-2435, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122358

RESUMEN

Previous research shows that, within human occipito-temporal cortex (OTC), we can use a general linear mapping function to link visual object responses across nonidentity feature changes, including Euclidean features (e.g., position and size) and non-Euclidean features (e.g., image statistics and spatial frequency). Although the learned mapping is capable of predicting responses of objects not included in training, these predictions are better for categories included than those not included in training. These findings demonstrate a near-orthogonal representation of object identity and nonidentity features throughout human OTC. Here, we extended these findings to examine the mapping across both Euclidean and non-Euclidean feature changes in human posterior parietal cortex (PPC), including functionally defined regions in inferior and superior intraparietal sulcus. We additionally examined responses in five convolutional neural networks (CNNs) pretrained with object classification, as CNNs are considered as the current best model of the primate ventral visual system. We separately compared results from PPC and CNNs with those of OTC. We found that a linear mapping function could successfully link object responses in different states of nonidentity transformations in human PPC and CNNs for both Euclidean and non-Euclidean features. Overall, we found that object identity and nonidentity features are represented in a near-orthogonal, rather than complete-orthogonal, manner in PPC and CNNs, just like they do in OTC. Meanwhile, some differences existed among OTC, PPC, and CNNs. These results demonstrate the similarities and differences in how visual object information across an identity-preserving image transformation may be represented in OTC, PPC, and CNNs.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal/fisiología , Redes Neurales de la Computación , Lóbulo Temporal
6.
Neuroimage ; 251: 118941, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122966

RESUMEN

Despite decades of research, our understanding of the relationship between color and form processing in the primate ventral visual pathway remains incomplete. Using fMRI multivoxel pattern analysis, we examined coding of color and form, using a simple form feature (orientation) and a mid-level form feature (curvature), in human ventral visual processing regions. We found that both color and form could be decoded from activity in early visual areas V1 to V4, as well as in the posterior color-selective region and shape-selective regions in ventral and lateral occipitotemporal cortex defined based on their univariate selectivity to color or shape, respectively (the central color region only showed color but not form decoding). Meanwhile, decoding biases towards one feature or the other existed in the color- and shape-selective regions, consistent with their univariate feature selectivity reported in past studies. Additional extensive analyses show that while all these regions contain independent (linearly additive) coding for both features, several early visual regions also encode the conjunction of color and the simple, but not the complex, form feature in a nonlinear, interactive manner. Taken together, the results show that color and form are encoded in a biased distributed and largely independent manner across ventral visual regions in the human brain.


Asunto(s)
Corteza Visual , Vías Visuales , Animales , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos , Estimulación Luminosa/métodos , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen
7.
Neuroimage ; 263: 119635, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36116617

RESUMEN

Forming transformation-tolerant object representations is critical to high-level primate vision. Despite its significance, many details of tolerance in the human brain remain unknown. Likewise, despite the ability of convolutional neural networks (CNNs) to exhibit human-like object categorization performance, whether CNNs form tolerance similar to that of the human brain is unknown. Here we provide the first comprehensive documentation and comparison of three tolerance measures in the human brain and CNNs. We measured fMRI responses from human ventral visual areas to real-world objects across both Euclidean and non-Euclidean feature changes. In single fMRI voxels in higher visual areas, we observed robust object response rank-order preservation across feature changes. This is indicative of functional smoothness in tolerance at the fMRI meso-scale level that has never been reported before. At the voxel population level, we found highly consistent object representational structure across feature changes towards the end of ventral processing. Rank-order preservation, consistency, and a third tolerance measure, cross-decoding success (i.e., a linear classifier's ability to generalize performance across feature changes) showed an overall tight coupling. These tolerance measures were in general lower for Euclidean than non-Euclidean feature changes in lower visual areas, but increased over the course of ventral processing for all feature changes. These characteristics of tolerance, however, were absent in eight CNNs pretrained with ImageNet images with varying network architecture, depth, the presence/absence of recurrent processing, or whether a network was pretrained with the original or stylized ImageNet images that encouraged shape processing. CNNs do not appear to develop the same kind of tolerance as the human brain over the course of visual processing.


Asunto(s)
Redes Neurales de la Computación , Reconocimiento Visual de Modelos , Animales , Humanos , Reconocimiento Visual de Modelos/fisiología , Percepción Visual , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Mapeo Encefálico
8.
Neuroimage ; 211: 116629, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057998

RESUMEN

How are outliers in an otherwise homogeneous object ensemble represented by our visual system? Are outliers ignored because they are the minority? Or do outliers alter our perception of an otherwise homogeneous ensemble? We have previously demonstrated ensemble representation in human anterior-medial ventral visual cortex (overlapping the scene-selective parahippocampal place area; PPA). In this study we investigated how outliers impact object-ensemble representation in this human brain region as well as visual representation throughout posterior brain regions. We presented a homogeneous ensemble followed by an ensemble containing either identical elements or a majority of identical elements with a few outliers. Human participants ignored the outliers and made a same/different judgment between the two ensembles. In PPA, fMRI adaptation was observed when the outliers in the second ensemble matched the items in the first, even though the majority of the elements in the second ensemble were distinct from those in the first; conversely, release from fMRI adaptation was observed when the outliers in the second ensemble were distinct from the items in the first, even though the majority of the elements in the second ensemble were identical to those in the first. A similarly robust outlier effect was also found in other brain regions, including a shape-processing region in lateral occipital cortex (LO) and task-processing fronto-parietal regions. These brain regions likely work in concert to flag the presence of outliers during visual perception and then weigh the outliers appropriately in subsequent behavioral decisions. To our knowledge, this is the first time the neural mechanisms involved in outlier processing have been systematically documented in the human brain. Such an outlier effect could well provide the neural basis mediating our perceptual experience in situations like "one bad apple spoils the whole bushel".


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Percepción de Color/fisiología , Reconocimiento Visual de Modelos/fisiología , Vías Visuales/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Vías Visuales/diagnóstico por imagen , Adulto Joven
9.
Cereb Cortex ; 29(5): 2034-2050, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29659730

RESUMEN

Recent studies have demonstrated the existence of rich visual representations in both occipitotemporal cortex (OTC) and posterior parietal cortex (PPC). Using fMRI decoding and a bottom-up data-driven approach, we showed that although robust object category representations exist in both OTC and PPC, there is an information-driven 2-pathway separation among these regions in the representational space, with occipitotemporal regions arranging hierarchically along 1 pathway and posterior parietal regions along another pathway. We obtained 10 independent replications of this 2-pathway distinction, accounting for 58-81% of the total variance of the region-wise differences in visual representation. The separation of the PPC regions from higher occipitotemporal regions was not driven by a difference in tolerance to changes in low-level visual features, did not rely on the presence of special object categories, and was present whether or not object category was task relevant. Our information-driven 2-pathway structure differs from the well-known ventral-what and dorsal-where/how characterization of posterior brain regions. Here both pathways contain rich nonspatial visual representations. The separation we see likely reflects a difference in neural coding scheme used by PPC to represent visual information compared with that of OTC.


Asunto(s)
Encéfalo/fisiología , Reconocimiento Visual de Modelos/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Estimulación Luminosa , Lóbulo Temporal/fisiología , Vías Visuales/fisiología , Adulto Joven
10.
J Cogn Neurosci ; 31(1): 49-63, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188780

RESUMEN

Primate ventral and dorsal visual pathways both contain visual object representations. Dorsal regions receive more input from magnocellular system while ventral regions receive inputs from both magnocellular and parvocellular systems. Due to potential differences in the spatial sensitivites of manocellular and parvocellular systems, object representations in ventral and dorsal regions may differ in how they represent visual input from different spatial scales. To test this prediction, we asked observers to view blocks of images from six object categories, shown in full spectrum, high spatial frequency (SF), or low SF. We found robust object category decoding in all SF conditions as well as SF decoding in nearly all the early visual, ventral, and dorsal regions examined. Cross-SF decoding further revealed that object category representations in all regions exhibited substantial tolerance across the SF components. No difference between ventral and dorsal regions was found in their preference for the different SF components. Further comparisons revealed that, whereas differences in the SF component separated object category representations in early visual areas, such a separation was much smaller in downstream ventral and dorsal regions. In those regions, variations among the object categories played a more significant role in shaping the visual representational structures. Our findings show that ventral and dorsal regions are similar in how they represent visual input from different spatial scales and argue against a dissociation of these regions based on differential sensitivity to different SFs.


Asunto(s)
Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Vías Visuales/fisiología , Adulto Joven
11.
J Neurosci ; 37(36): 8767-8782, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821655

RESUMEN

Recent studies have challenged the ventral/"what" and dorsal/"where" two-visual-processing-pathway view by showing the existence of "what" and "where" information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect "what an object is," those in the dorsal pathway are more adaptive and reflect "what we do with it." Thus, despite the existence of "what" and "where" information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation.SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes "what" an object is and the dorsal pathway that processes "where" it is located. This view has been challenged by recent studies revealing the existence of "what" and "where" information in both pathways. Here, we found that goal-directed visual information processing differentially modulates shape-based object category representations in the two pathways. Whereas ventral representations are more invariant to the demand of the task, reflecting what an object is, dorsal representations are more adaptive, reflecting what we do with the object. Thus, despite the existence of "what" and "where" information in both pathways, visual representations may still differ fundamentally in the two pathways.


Asunto(s)
Percepción de Color/fisiología , Percepción de Forma/fisiología , Objetivos , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Adolescente , Adulto , Humanos , Masculino , Análisis y Desempeño de Tareas , Adulto Joven
12.
J Cogn Neurosci ; 30(7): 973-984, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29561239

RESUMEN

Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.


Asunto(s)
Mapeo Encefálico , Discriminación en Psicología/fisiología , Lateralidad Funcional , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Competencia Profesional , Lóbulo Temporal/diagnóstico por imagen , Adulto , Automóviles , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Oxígeno/sangre , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Adulto Joven
13.
J Neurosci ; 36(5): 1607-19, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843642

RESUMEN

The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a "content-poor" view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be "content rich" and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT: The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been associated with human occipital and temporal cortices, here we show, by measuring fMRI response patterns, that a region in the human parietal cortex can robustly represent task-relevant object identities. These representations are invariant to changes in a host of visual features, such as viewpoint, and reflect an abstract level of representation that has not previously been reported in the human parietal cortex. Critically, these neural representations are behaviorally relevant as they closely track the perceived object identities. Human parietal cortex thus participates in the moment-to-moment goal-directed visual information representation in the brain.


Asunto(s)
Reconocimiento Facial/fisiología , Personajes , Lóbulo Parietal/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Memoria a Corto Plazo/fisiología , Adulto Joven
14.
J Cogn Neurosci ; 29(10): 1778-1789, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28598733

RESUMEN

A host of recent studies have reported robust representations of visual object information in the human parietal cortex, similar to those found in ventral visual cortex. In ventral visual cortex, both monkey neurophysiology and human fMRI studies showed that the neural representation of a pair of unrelated objects can be approximated by the averaged neural representation of the constituent objects shown in isolation. In this study, we examined whether such a linear relationship between objects exists for object representations in the human parietal cortex. Using fMRI and multivoxel pattern analysis, we examined object representations in human inferior and superior intraparietal sulcus, two parietal regions previously implicated in visual object selection and encoding, respectively. We also examined responses from the lateral occipital region, a ventral object processing area. We obtained fMRI response patterns to object pairs and their constituent objects shown in isolation while participants viewed these objects and performed a 1-back repetition detection task. By measuring fMRI response pattern correlations, we found that all three brain regions contained representations for both single object and object pairs. In the lateral occipital region, the representation for a pair of objects could be reliably approximated by the average representation of its constituent objects shown in isolation, replicating previous findings in ventral visual cortex. Such a simple linear relationship, however, was not observed in either parietal region examined. Nevertheless, when we equated the amount of task information present by examining responses from two pairs of objects, we found that representations for the average of two object pairs were indistinguishable in both parietal regions from the average of another two object pairs containing the same four component objects but with a different pairing of the objects (i.e., the average of AB and CD vs. that of AD and CB). Thus, when task information was held consistent, the same linear relationship may govern how multiple independent objects are represented in the human parietal cortex as it does in ventral visual cortex. These findings show that object and task representations coexist in the human parietal cortex and characterize one significant difference of how visual information may be represented in ventral visual and parietal regions.


Asunto(s)
Lóbulo Parietal/fisiología , Reconocimiento Visual de Modelos/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Lóbulo Parietal/diagnóstico por imagen , Estimulación Luminosa , Adulto Joven
15.
J Cogn Neurosci ; 29(2): 398-412, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27676614

RESUMEN

Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.


Asunto(s)
Percepción de Forma/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adaptación Psicológica/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Juicio/fisiología , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Tiempo de Reacción , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Vías Visuales/fisiología , Adulto Joven
17.
J Neurosci ; 35(4): 1539-48, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632131

RESUMEN

Most of human daily social interactions rely on the ability to successfully recognize faces. Yet ∼2% of the human population suffers from face blindness without any acquired brain damage [this is also known as developmental prosopagnosia (DP) or congenital prosopagnosia]). Despite the presence of severe behavioral face recognition deficits, surprisingly, a majority of DP individuals exhibit normal face selectivity in the right fusiform face area (FFA), a key brain region involved in face configural processing. This finding, together with evidence showing impairments downstream from the right FFA in DP individuals, has led some to argue that perhaps the right FFA is largely intact in DP individuals. Using fMRI multivoxel pattern analysis, here we report the discovery of a neural impairment in the right FFA of DP individuals that may play a critical role in mediating their face-processing deficits. In seven individuals with DP, we discovered that, despite the right FFA's preference for faces and it showing decoding for the different face parts, it exhibited impaired face configural decoding and did not contain distinct neural response patterns for the intact and the scrambled face configurations. This abnormality was not present throughout the ventral visual cortex, as normal neural decoding was found in an adjacent object-processing region. To our knowledge, this is the first direct neural evidence showing impaired face configural processing in the right FFA in individuals with DP. The discovery of this neural impairment provides a new clue to our understanding of the neural basis of DP.


Asunto(s)
Cara , Lateralidad Funcional , Reconocimiento Visual de Modelos/fisiología , Prosopagnosia/patología , Prosopagnosia/fisiopatología , Corteza Visual/patología , Adulto , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Luminosa , Corteza Visual/irrigación sanguínea
18.
J Neurophysiol ; 116(3): 1488-97, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440243

RESUMEN

Based on different cognitive tasks and mapping methods, the human intraparietal sulcus (IPS) has been subdivided according to multiple different organizational schemes. The presence of topographically organized regions throughout IPS indicates a strong location-based processing in this brain region. However, visual short-term memory (VSTM) studies have shown that while a region in the inferior IPS region (inferior IPS) is involved in object individuation and selection based on location, a region in the superior IPS (superior IPS) primarily encodes and stores object featural information. Here, we determined the localization of these two VSTM IPS regions with respect to the topographic IPS regions in individual participants and the role of different IPS regions in location- and feature-based processing. Anatomically, inferior IPS showed an 85.2% overlap with topographic IPS regions, with the greatest overlap seen in V3A and V3B, and superior IPS showed a 73.6% overall overlap, with the greatest overlap seen in IPS0-2. Functionally, there appeared to be a partial overlap between IPS regions involved in location- and feature-based processing, with more inferior and medial regions showing a stronger location-based processing and more superior and lateral regions showing a stronger feature-based processing. Together, these results suggest that understanding the multiplex nature of IPS in visual cognition may not be reduced to examining the functions of the different IPS topographic regions, but rather, it can only be accomplished by understanding how regions identified by different tasks and methods may colocalize with each other.


Asunto(s)
Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Cognición/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Lóbulo Parietal/diagnóstico por imagen , Estimulación Luminosa , Adulto Joven
19.
Cereb Cortex ; 25(11): 4226-39, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24964917

RESUMEN

Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency.


Asunto(s)
Adaptación Fisiológica/fisiología , Mapeo Encefálico , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Adulto , Análisis de Varianza , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Luminosa , Corteza Visual/irrigación sanguínea , Vías Visuales/irrigación sanguínea , Adulto Joven
20.
J Vis ; 16(10): 2, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27494544

RESUMEN

The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.


Asunto(s)
Atención/fisiología , Lateralidad Funcional , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Adolescente , Adulto , Encéfalo/anatomía & histología , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA