Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 109(4): 600-608, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35113218

RESUMEN

The relationship between the migration process and speciation distribution of Cr is important for the risk assessment in the underground environment. In this work, soil columns were collected from the chromate production site, with a 40-year operation, in the groundwater depression cone area of North China plain. The relationship between chromium pollution features and the geochemical properties of soil was established, and the migration risk of Cr(VI) was assessed based on the Nemerow composite index and Hydrus-1D model. The maximum total Cr concentration in the chromium slag dumping site reached 907 mg/kg, and that in the chromate production workshop was more than 200 mg/kg across the depth. The migration of Cr might be accelerated in the soil with abundant Mn (236-1461 mg/kg) but scarce organic matters (< 0.45%). The Hydrus simulation indicated that Cr(VI) would reach a cumulative flux of 300-729 mg/cm2 after 50 years.


Asunto(s)
Agua Subterránea , Contaminantes del Suelo , Cromatos , Cromo/análisis , Depresión , Agua Subterránea/química , Suelo/química , Contaminantes del Suelo/análisis
2.
RSC Adv ; 11(58): 36596-36606, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35494358

RESUMEN

Due to unique anti-erosion properties and excellent thermal stability, polytetrafluoroethylene (PTFE) fibers are regarded as an ideal material to manufacture filters for industrial dust purification. Based on weak interactions between PTFE molecular chains, we applied a high-pressure waterjet to cause normal PTFE split-film fibers to split fibers again. Four kinds of PTFE split-film fibers and sintered films with different molecular weights were produced. Afterward, waterjets were introduced to impact PTFE sintered films and split-film fibers under different pressures and jets, and we analyzed variations in the sintered film morphology and fiber diameter. When the molecular weight was increased, the visible light transmittance of four different PTFE sintered films at the wavelength of 382 nm decreased from 85.7% to 77.6% and then increased to 95.1%, which was consistent with light-dark characteristics in light micrographs of sintered films. The four PTFE sintered films split into fibers under the waterjet impact force. In particular, MW49 PTFE sintered film was split into microscale fibers using waterjets at 110 bar and 5 jets. Finally, waterjets were applied to impact normal PTFE split-film fibers to force the original fibers to split into fine fibers. Different PTFE split-film fibers exhibited a significant decrease in the average diameter. In particular, in the case of MW49 PTFE split-film fibers, the average diameter of fibers impacted by 5 jets at 110 bar decreased from 27.4 to 15.7 µm, confirming the suitability of high-pressure waterjets for the splitting of PTFE split-film fibers into microscale fibers.

3.
Environ Pollut ; 263(Pt B): 114491, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32304979

RESUMEN

The abnormality in thyroid hormone modulation in developmental fish, vulnerable to per- and polyfluorinated substances, is of particular concerns for the alternative substances. Juvenile rare minnows, were exposed to chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), the novel alternatives to perfluorooctane sulfonate (PFOS), for 4 weeks followed by 12 weeks of depuration. Half lives were determined to be 33 d, 29 d, and 47 d for total Cl-PFESAs, C8 Cl-PFESA and C10 Cl-PFESA, respectively. Preliminary toxicity test suggested that Cl-PFESAs are moderately toxic to Rare minnow with a LC50 of 20.8 mg/L (nominal concentration) after 96 h of exposure. In the chronic toxicity test, fishes were exposed to Cl-PFESAs at geometric mean measured concentrations of 86.5 µg/L, 162 µg/L and 329 µg/L. In juvenile fishes exposed to Cl-PFESAs for 4 weeks, gene profile sequencing analysis identified 3313 differentially expressed genes, based on which pathways regulating thyroid hormone synthesis and steroid synthesis were enriched. Both whole body total and free 3,5,3'-triiodothyronine (T3) levels were significantly increased. mRNA expression of genes regulating thyroid hormone synthesis (corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (THS), sodium/iodide symporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO), transport (transthyretin,TTR), deiodinase (Dio1, Dio2) and receptor (TRα and TRß) were decreased. Uridinediphosphate glucoronosyl-transferases (UGT1A) gene, regulating THs metabolism, was also decreased. In adult fish, thyroid hormone and genes expression in hypothalamic-pituitary-thyroid axis remained at disturbed levels after 12 weeks of depuration without exposure. Chronic developmental exposure to Cl-PFESAs caused persistent thyroid hormone disrupting effects in fish, highlighting a necessity of comprehensive ecological risk assessment.


Asunto(s)
Cyprinidae , Éter , Animales , Éteres , Larva , Hormonas Tiroideas , Toxicocinética , Pez Cebra
4.
ACS Appl Mater Interfaces ; 11(51): 48437-48449, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31790597

RESUMEN

The demand for air filtration materials in recent years has been substantially increasing on a worldwide scale because people are paying extensive attention to particulate matter (PM) pollution. In this work, we report a type of needle-punched triboelectric air filter (N-TAF) consisting of polytetrafluoroethylene (PTFE) fibers modified by silica nanoparticles and polyphenylene sulfide (PPS) fibers. Compared to conventional electrostatic precipitators, the N-TAF can be charged online by a unique nonwoven processing technology without additional energy consumption and toxic ozone emission. Owing to the triboelectrification effect, a large number of charges were generated during the process of carding and needle-punching, resulting in an increased filtration performance. Benefiting from the addition of silica nanoparticles, the PTFE fibers are endowed with many pores and grooves and substantial surface roughness, which contributes to the enhancement of triboelectrification. As a result, the N-TAF with 2 wt % silica nanoparticles (N-TAF-2) exhibited a high removal efficiency of 89.4% for PM, which is 45% higher than unmodified N-TAF (61.8%), and a low pressure drop of 18.6 Pa. Meanwhile, the decay of the removal efficiency for N-TAF-2 remained at a low level (6.4%) for 60 days. More importantly, N-TAF-2 could realize a high efficiency of 99.7% and a low pressure drop of 55.4 Pa at a high surface density. In addition, the washed N-TAF has an excellent charge regeneration performance via air blowing or manual rubbing, thus recovering the removal efficiency easily and rapidly. Ultimately, the powerful dust holding capacity (227 g m-2) for N-TAF-2 indicates that the filter has a long service life, which makes it a promising air purification material. The filter reported in this work has the potential to be practically applied to air purification fields because it has excellent filtration performance and is easy to be produced on a large industrial scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA