Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(46): e2310883120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37934818

RESUMEN

Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.

2.
Anal Chem ; 96(4): 1686-1692, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38118402

RESUMEN

Fat mass and obesity-associated protein (FTO) plays a crucial role in regulating the dynamic modification of N6-methyladenosine (m6A) in eukaryotic mRNA. Sensitive detection of the FTO level and efficient evaluation of the FTO demethylase activity are of great importance to early cancer diagnosis and anticancer drug discovery, which are currently challenged by limited sensitivity/precision and low throughput. Herein, a robust strategy based on the dephosphorylation switch DNAzyme-rolling circle amplification (RCA) circuit, termed DSD-RCA, is developed for highly sensitive detection of FTO and inhibitor screening. Initially, the catalytic activity of DNAzyme is silenced by engineering with an m6A modification in its catalytic core. Only in the presence of target FTO can the methyl group on DNAzyme be eliminated, resulting in the activation of the catalytic activity of DNAzyme and thus cleaving the hairpin substrate to release numerous primers. Different from the conventional methods that use the downstream cleavage primer with the original 3'-hydroxyl end directly as the RCA primer with the problem of high background signal, which should be compensated by additional separation and wash steps in heterogeneous format, our DSD-RCA assay uses the upstream cleavage primer with a 2',3'-cyclic phosphate terminus at the 3'-end serving as an intrinsically blocked 3' end. Only after a dephosphorylation reaction mediated by T4 polynucleotide kinase can the upstream cleavage primers with a resultant 3'-hydroxyl end be extended by RCA. With the high signal-to-noise ratio and homogeneous property, the proposed platform can sensitively detect FTO with a limit of detection of 31.4 pM, and the relative standard deviations (RSDs %) ranging from 0.8 to 2.0% were much lower than the heterogeneous methods. The DSD-RCA method was applied for analyzing FTO in cytoplasmic lysates from different cell lines and tissues of breast cancer patients and further used for screening FTO inhibitors without the need for separation or cleaning, providing an opportunity for achieving high throughput and demonstrating the potential applications of this strategy in disease diagnostics, drug discovery, and biological applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Humanos , ADN Catalítico/química , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Línea Celular , Polinucleótido 5'-Hidroxil-Quinasa , Límite de Detección , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
3.
Langmuir ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316545

RESUMEN

Loading cocatalysts to promote spatial charge separation has been confirmed as an effective method for improving photocatalytic hydrogen production. This article reports that the synthesis of Ni(OH)2/Cd0.9Zn0.1S nanorod photocatalyst is suitable for photocatalytic H2 generation under visible light. It can be proven that the binary photocatalyst exhibits a one-dimensional nanorod morphological structure. Ni(OH)2 nanosheets occupy the top area of Cd0.9Zn0.1S nanorods. The photocatalytic H2 production rate can reach 132.93 mmol·h-1·g-1, which corresponds to an apparent quantum efficiency of up to 76.5% at a wavelength of 460 nm. In addition, the Ni(OH)2 nanosheet can aggregate the light-incited electrons of Cd0.9Zn0.1S, inhibiting the confluence of electrons and holes. The detailed analysis of its mechanism through characterization methods such as photoluminescence and electrochemical measurement shows that the significant improvement in photocatalytic performance derives from the effective spatial separation of photo-induced charge carriers. Therefore, this synthesis strategy of one-dimensional materials may bring new prospects for more efficient, stable, and sustainable photocatalysis for water splitting.

4.
Mikrochim Acta ; 191(8): 500, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088046

RESUMEN

Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cobre , Técnicas Electroquímicas , Oro , Límite de Detección , Lipopolisacáridos , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Oro/química , Cobre/química , Técnicas Electroquímicas/métodos , Lipopolisacáridos/análisis , Lipopolisacáridos/sangre , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Electrodos , Nanoestructuras/química , Porfirinas/química , Humanos
5.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201814

RESUMEN

Sugarcane smut, caused by the fungus Sporisorium scitamineum (Sydow), significantly affects sugarcane crops worldwide. Infected plants develop whip-like structures known as sori. Significant variations in these whip lengths are commonly observed, but the physiological and molecular differences causing these morphological differences remain poorly documented. To address this, we employed conventional microbe isolation, metagenomic, and metabolomic techniques to investigate smut-infected sugarcane stems and whips of varying lengths. Metagenomics analysis revealed a diverse fungal community in the sugarcane whips, with Sporisorium and Fusarium genera notably present (>1%) in long whips. Isolation techniques confirmed these findings. Ultra-performance liquid chromatography analysis (UHPLC-MS/MS) showed high levels of gibberellin hormones (GA3, GA1, GA4, GA8, and GA7) in long whips, with GA4 and GA7 found exclusively in long whips and stems. Among the prominent genera present within long whips, Fusarium was solely positively correlated with these gibberellin (GA) hormones, with the exception of GA8, which was positively correlated with Sporisorium. KEGG enrichment analysis linked these hormones to pathways like diterpenoid biosynthesis and plant hormone signal transduction. These findings suggest that Fusarium may influence GA production leading to whip elongation. Our study reveals fungal dynamics and gibberellin responses in sugarcane smut whips. Future research will explore the related molecular gibberellin synthesis mechanisms.


Asunto(s)
Giberelinas , Enfermedades de las Plantas , Saccharum , Giberelinas/metabolismo , Saccharum/microbiología , Saccharum/metabolismo , Enfermedades de las Plantas/microbiología , Fusarium/metabolismo , Fusarium/genética , Fusarium/patogenicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Metagenómica/métodos
6.
Ecotoxicol Environ Saf ; 259: 115002, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201422

RESUMEN

Multiple antibiotics that are used in veterinary medicine coexist in soils, but their interaction and the effects on adsorption and desorption in soils have not been extensively studied. In this study, using batch experiments, we evaluated the adsorption and desorption of sulfadiazine (SDZ), tetracycline (TC), and norfloxacin (NFX) using four different soil aggregate size fractions and discovered that: (1) TC had the highest adsorption (76-98 %) and the lowest desorption in each tested system, whereas SDZ showed opposite adsorption and desorption ability, (2) the highest adsorption and the lowest desorption of all three tested antibiotics were observed with soil macroaggregates (250-2000 µm) in all the cases; in contrast, opposite adsorption and desorption ability were observed for soil clay (<53 µm), and (3) adsorption of each antibiotic was in the following order: single system (71-89 %) > binary system (56-84 %) > ternary system (50-78 %); however, desorption were in the reverse order. The Freundlich equation fitting and Brunauer-Emmett-Teller (BET) analysis further demonstrated that the adsorption competition between the tested antibiotics depended mainly on the specific surface area of each soil aggregate size fractions and its chemical properties. In conclusion, soil macroaggregates play a key role in the retention of antibiotics in soils, and the coexistence of multiple antibiotics greatly increases leaching risk.


Asunto(s)
Antibacterianos , Contaminantes del Suelo , Antibacterianos/análisis , Suelo/química , Adsorción , Contaminantes del Suelo/análisis , Tetraciclina/química , Sulfadiazina
7.
Plant Dis ; 107(5): 1299-1309, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36410020

RESUMEN

Pokkah boeng disease (PBD), a sugarcane foliar disease, is caused by various Fusarium spp. within the Fusarium fujikuroi species complex (FFSC). In the current study, we investigated the diversity of Fusarium spp. associated with PBD in China. In total, 320 leaf samples displaying PBD symptoms were collected over 10 consecutive years (2012 to 2021), during winter and summer, from six various sugarcane-growing regions (Guangxi, Yunnan, Guangdong, Zhejiang, Hainan, and Fujian) in China. Phylogenetic analysis of Fusarium spp. was reconstructed using translation elongation factor 1-α, and DNA-directed RNA polymerase II largest subunit and second-largest subunit multigene sequences. Evolutionary studies of these regions categorized the isolates into four FFSC species (F. sacchari, F. proliferatum, F. verticillioides, and F. andiyazi). The identified isolates, which developed irregular necrotic patches and rotting symptoms on the sugarcane plant after approximately 30 days were tested for their pathogenicity. Symptoms that appeared during pathogenicity testing were consistent with those observed under field conditions. Each strain of the pathogenic Fusarium spp. belonged to different vegetative compatibility groups (VCGs), and there was no affinity between VCGs. Our results contribute to understanding FFSC and accurately identifying Fusarium spp. associated with the sugarcane crop.


Asunto(s)
Fusarium , Saccharum , Filogenia , Virulencia/genética , China , Grano Comestible , Variación Genética
8.
Nano Lett ; 22(14): 5788-5794, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35834670

RESUMEN

Dynamic observation of the behaviors of nanomaterials in the cellular environment is of great significance in mechanistic investigations on nanomaterial-based diagnostics and therapeutics. Realizing label-free observations with nanometer resolution is necessary but still has major challenges. Herein, we propose a NanoSuit-assisted liquid-cell scanning electron microscopy (NanoSuit-LCSEM) method that enables imaging of the behaviors of nanoparticles in living cells. Taking A549 cells and gold nanoparticles (AuNPs) as a cell-nanoparticle interaction model, the NanoSuit-LCSEM method showed a significantly improved resolution to 10 nm, which is high enough to distinguish single and two adjacent 30 nm AuNPs in cells. The continuous observation time for living cells is extended to 30 min, and the trajectories and velocities for the transmembrane movement of AuNP aggregates are obtained. This study provides a new approach for dynamic observation of nanomaterials in intact living cells and will greatly benefit the interdisciplinary research of nanomaterials, nanomedicine, and nanotechnology.


Asunto(s)
Oro , Nanopartículas del Metal , Microscopía Electrónica de Rastreo , Nanomedicina , Nanotecnología
9.
Angew Chem Int Ed Engl ; 62(18): e202300954, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36878876

RESUMEN

Cells in different states can release diverse types of extracellular vesicles (EVs) that participate in intracellular communication or pathological processes. The identification and isolation of EV subpopulations are significant to explore their physiological functions and clinical value. In this study, structurally heterogeneous T-cell receptor (TCR)-CD3 EVs were proposed and verified for the first time using a caliper strategy. Two CD3-targeting aptamers were designed in the shape of a caliper with an optimized probe distance and were assembled on gold nanoparticles (Au-Caliper) to distinguish TCR-CD3 monomeric and dimeric EVs (m/dCD3 EVs) in skin-transplanted mouse plasma. Phenotyping and sequencing analysis revealed clear heterogeneity in the isolated m/dCD3 EVs, providing the potential for mCD3 EVs as a candidate biomarker of acute cellular rejection (ACR) and holding great prospects for distinguishing EV subpopulations based on protein oligomerization states.


Asunto(s)
Vesículas Extracelulares , Nanopartículas del Metal , Animales , Ratones , Oro/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
10.
Anal Chem ; 94(31): 10991-10999, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35749725

RESUMEN

Small extracellular vesicles (sEVs) play important roles in mediating intercellular communication and regulating biological processes. Facile sEV isolation is the essential and preliminary issue for their function investigation and downstream biomedical applications, while the traditional methods are challenged by tedious procedures, low purity, low yield, and potential damage. In this work, we developed an sEV isolation paper-based device (sEV-IsoPD) based on a three-dimensional (3D) paper chip, which is composed of a porous membrane for size exclusion and a metal-organic framework (MOF)/antibody-modified paper for immunoaffinity capture. In combination with a peristaltic pump-driven flow system, the sEV-IsoPD can efficiently isolate EV from cell culture medium and serum. Compared with the ultracentrifugation method, sEV-IsoPD exhibited a 5.1 times higher yield (1.7 × 109 mL-1), 1.6 times higher purity (1.6 × 1011 mg-1), and 7.5 times higher recovery (77.3%) with only 8.3% of the time (30 min) and 1.0% of the instrument cost ($710). Moreover, sEV concentration can be visually detected in a quantitative manner with this paper-based device with a linear range from 3.0 × 106 to 3.0 × 1010 mL-1 and a detection limit of 2.2 × 106 mL-1. The sEV-IsoPD provides an efficient and practical approach for the rapid isolation and visible detection of sEVs, which are promising for the preparation of sEVs and diagnosis of disease.


Asunto(s)
Vesículas Extracelulares , Técnicas de Cultivo de Célula , Suero , Ultracentrifugación
11.
Anal Chem ; 94(27): 9665-9673, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35758600

RESUMEN

Sensitive imaging of intracellular microRNA (miRNA) in living cells is of great significance. Isothermal hybridization chain reaction (HCR)-based methods, although have been widely used to monitor intracellular low-abundance miRNA, are still subjected to the challenges of limited signal amplification efficiency and compromised imaging resolution. In this work, we design a light-controlled recruitable HCR (LCR-HCR) strategy that enables us to well overcome these limitations. Exosomes as delivery and recruitment vehicles are modified with three cholesterol-modified hairpins (H1, H2, and H3), in which H1 is for anchoring target miRNA and H2 and H3 with photocleavable linkers (PC-linkers) are designed for spatiotemporal HCR. By controllably releasing probes with high local concentrations to efficiently trigger HCR and further recruiting the generated double-stranded DNA (dsDNA) polymers instead of dispersion in the cytoplasm, the LCR-HCR method can significantly improve the imaging contrast by confining all of the reactants on exosome vehicles. For a proof-of-concept demonstration, the miR-21 was analyzed by LCR-HCR with a limit of detection (LOD) down to 3.3 pM (corresponding to 165 amol per 50 µL) in vitro and four times higher response than traditional HCR in vivo. In general, the LCR-HCR method provides a powerful tool for sensitive miRNA imaging in living cells and cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Exosomas , MicroARNs , ADN/genética , Límite de Detección , MicroARNs/genética , Hibridación de Ácido Nucleico
12.
Anal Chem ; 94(35): 12221-12230, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36000958

RESUMEN

Imaging of tumor-associated microRNAs (miRNAs) can provide abundant information for cancer diagnosis, whereas the occurrence of trace amounts of miRNAs in normal cells inevitably causes an undesired false-positive signal in the discrimination of cancer cells during miRNA imaging. In this study, we propose a dual-locked (D-locked) platform consisting of the enzyme/miRNA-D-locked DNAzyme sensor and the honeycomb MnO2 nanosponge (hMNS) nanocarrier for highly specific cancer cell imaging. For a proof-of-concept demonstration, apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 were chosen as key models. The hMNS nanocarrier can efficiently release the D-locked DNAzyme sensor in living cells due to the decomposition of hMNS by glutathione, which can also supply Mn2+ for DNAzyme cleavage. Ascribing to the smart design of the D-locked DNAzyme sensor, the fluorescence signal can only be generated by the synergistic response of APE1 and miR-21 that are overexpressed in cancer cells. Compared with the miRNA single-locked DNAzyme sensor and the small-molecule (ATP)/miRNA D-locked DNAzyme sensor, the proposed enzyme (APE1)/miRNA D-locked DNAzyme sensor exhibited 2.6-fold and 2.4-fold higher discrimination ratio (Fcancer/Fnormal) for cancer cell discrimination, respectively. Owing to the superior performance, the D-locked strategy can selectively generate a fluorescence signal in cancer cells, facilitating accurate discrimination of cancer both in vitro and in vivo. Furthermore, this D-locked platform is easily adaptable toward other target molecules by redesigning the DNA sequences. The outstanding performance and expansibility of this D-locked platform holds promising prospects for cancer diagnosis and related biomedical applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Neoplasias , ADN Catalítico/genética , Compuestos de Manganeso , MicroARNs/genética , Microscopía Fluorescente/métodos , Óxidos
13.
Anal Bioanal Chem ; 414(20): 6157-6166, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35732745

RESUMEN

Long-term and continuous monitoring of the microRNA (miRNA) expression in living cells is essential in biomedical research, but it is currently limited by fast consumption and easy digestion of probes in the intracellular environment. Herein, we report polydopamine-modified gold nanoparticles (AuNPs@PDA) as protective and efficient nanocarriers for DNA hairpin probes (hpDNA), achieving long-term monitoring (48 h) of the miRNA (let-7a) levels in living cells after drug treatments. This method enabled excellent sensitivity and high selectivity toward let-7a with a limit of detection of 0.51 nM (n = 3) and a linear range from 1 to 100 nM. More importantly, AuNPs@PDA can not only efficiently improve the loading of hpDNA on each nanoparticle, but also effectively protect hpDNA from hydrolysis in the cell microenvironment, finally realizing the continuous monitoring of let-7a in living cells for 48 h. This simple method would be of great significance for drug screening and precision medicine.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Sondas de ADN , Oro , Límite de Detección , MicroARNs/genética
14.
Ecotoxicol Environ Saf ; 232: 113281, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124422

RESUMEN

The aim of this study was to characterize the effects of cornstalk biomass amendments on microbial communities in bauxite residues (BRs) by phylogenetic analysis. Improvements in soil geochemical, physical, and biological properties were assessed to identify the major factors controlling microbial community development in BRs. After one year of incubation, the salinity and structure of the amended BRs had gradually improved, with pH dropping from 11.39 to 9.89, the exchangeable sodium percentage (ESP) dropping from 86.3% to 35.2%, and the mean weight diameter (MWD) rising from 0.12 mm to 0.38 mm. Further analysis of community level physiological profiles (CLPP) showed that the microbial utilization of different carbohydrates had shifted significantly, in addition to increases in the diversity index H' (0.7-7.34), U (2.16-3.14), and the average well color development (0.059-1.08). Over the one-year outside incubation, the dominant fungal phyla in the BRs had shifted gradually from Ascomycota (85.64%) to Ascomycota (52.07%) and Basidiomycota (35.53%), while the dominant bacterial phyla had shifted from Actinobacteria (38.47%), Proteobacteria (21.39%), and Gemmatimonadetes (12.72%) to Actinobacteria (14.87%), Proteobacteria (23.53%), and Acidobacteria (14.37%). Despite these shifts, microbial diversity remained lower in the amended BRs than in the natural soil. Further redundancy analysis indicated that pH was the major factor driving shifts in the bacterial community, while aggregates were the major factor driving shifts in the fungal community. This study demonstrated that amendment with cornstalk biomass shifted the microbial community in the BRs from halophilic groups to acidogenic groups by improving the soil environmental conditions.


Asunto(s)
Microbiota , Microbiología del Suelo , Óxido de Aluminio/química , Biomasa , Filogenia , Suelo/química
15.
Anal Chem ; 93(22): 7787-7791, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34037387

RESUMEN

5-Hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) are key intermediates of active DNA demethylation, for which the global detection methods are still restricted by high cost and long operation time. Here, we demonstrate a pearl necklacelike strategy to accurately quantify global 5hmC and 5fC in genomic DNA. In this method, the metal-organic framework (MOF), [Cu3(BTC)2] (denoted as HKUST-1, H3BTC = 1,3,5-benzenetricarboxylic acid), with a diameter of ∼30 nm that contains ∼15 000 copper ions (Cu2+) as the "super label" was in situ grown in the carboxylated 5hmC and 5fC loci of genomic DNA via the coordination between Cu2+ and the carboxyl group. After the acid digestion of MOF, the concentration of Cu2+, which has a quantitative relationship with the 5hmC/5fC content, was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The metal element enrichment during MOF growth has amplified the signal by 4 orders of magnitude, realizing sensitive and accurate quantification of global 5hmC and 5fC in different tissues with a detection limit of 0.031% and 0.019‰ in DNA, respectively. The bisulfite- and mass spectrometry-free strategy is easily performed in almost all research and medical laboratories and would provide potential capability to quantify other candidate modifications in nucleotides.


Asunto(s)
5-Metilcitosina , Citosina , 5-Metilcitosina/análogos & derivados , Citosina/análogos & derivados , Análisis Espectral
16.
Anal Chem ; 93(42): 14031-14035, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34637276

RESUMEN

Quantitative analysis of 5-hydroxymethylcytosine (5hmC) has remarkable clinical significance to early cancer diagnosis; however, it is limited by the requirement in current assays for large amounts of starting material and expensive instruments requring expertise. Herein, we present a highly sensitive fluorescence method, termed hmC-TACN, for global 5hmC quantification from several nanogram inputs based on terminal deoxynucleotide transferase (TdT)-assisted formation of fluorescent copper (Cu) nanotags. In this method, 5hmC is labeled with click tags by T4 phage ß-glucosyltransferase (ß-GT) and cross-linked with a random DNA primer via click chemistry. TdT initiates the template-free extension along the primer at the modified 5hmC site and then generates a long polythymine (T) tail, which can template the production of strongly emitting Cu nanoparticles (CuNPs). Consequently, an intensely fluorescent tag containing numerous CuNPs can be labeled onto the 5hmC site, providing the sensitive quantification of 5hmC with a limit of detection (LOD) as low as 0.021% of total nucleotides (S/N = 3). With only a 5 ng input (∼1000 cells) of genomic DNA, global 5hmC levels were accurately determined in mouse tissues, human cell lines (including normal and cancer cells of breast, lung, and liver), and urines of a bladder cancer patient and healthy control. Moreover, as few as 100 cells can also be distinguished between normal and cancer cells. The hmC-TACN method has great promise of being cost effective and easily mastered, with low-input clinical utility, and even for the microzone analysis of tumor models.


Asunto(s)
5-Metilcitosina , Cobre , 5-Metilcitosina/análogos & derivados , Animales , ADN , ADN Nucleotidilexotransferasa , Humanos , Ratones
17.
Nucleic Acids Res ; 47(19): e119, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31418020

RESUMEN

The current methods for quantifying genome-wide 5-methylcytosine (5mC) oxides are still scarce, mostly restricted with two limitations: assay sensitivity is seriously compromised with cost, assay time and sample input; epigenetic information is irreproducible during polymerase chain reaction (PCR) amplification without bisulfite pretreatment. Here, we propose a novel Polymerization Retardation Isothermal Amplification (PRIA) strategy to directly amplify the minute differences between epigenetic bases and others by arranging DNA polymerase to repetitively pass large electron-withdrawing groups tagged 5mC-oxides. We demonstrate that low abundant 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) in genomic DNA can be accurately quantified within 10 h with 100 ng sample input on a laboratory real-time quantitative PCR instrument, and even multiple samples can be analyzed simultaneously in microplates. The global levels of 5hmC and 5fC in mouse and human brain tissues, rat hippocampal neuronal tissue, mouse kidney tissue and mouse embryonic stem cells were quantified and the observations not only confirm the widespread presence of 5hmC and 5fC but also indicate their significant variation in different tissues and cells. The strategy is easily performed in almost all research and medical laboratories, and would provide the potential capability to other candidate modifications in nucleotides.


Asunto(s)
5-Metilcitosina/aislamiento & purificación , Metilación de ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Epigenómica/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Citosina/análogos & derivados , Citosina/metabolismo , ADN/genética , Genoma/genética , Humanos , Ratones , Óxidos/química , Reacción en Cadena de la Polimerasa , Polimerizacion , Ratas
18.
J Environ Manage ; 284: 112052, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33540194

RESUMEN

The fungal community and soil geochemical, physical and biological parameters were analyzed, respectively, in bauxite residues (BRs) treated with organic matter and vermiculite/fly ash by phylogenetic analysis of ITS-18 S rRNA, community level physiological profiles (CLPP) and so on. The results indicated that after amendment of the BR, microbial utilization of carbohydrates and their enzyme activities were significantly increased, but fungal compositions at the phylum level were similar and dominated by the phylum of Ascomycota (82.05-98.96%, RA: relative abundance) after one year of incubation. The fungal taxa in the amended BR treatments, however, show significantly less alpha and beta diversity compared with the reference soils, although they still harbor a substantial novel taxon. The combined amendment of organic matter (OM) and vermiculite/fly ash significantly increases the fungal taxa at the genus and species level compared with solely OM amendment. The results of the following canonical correspondence analysis found that, over 90% variation of the fungal community could be explained by pH, OM and mean weight diameter (MWD) of aggregates; but the biological indicators, including urease (UR), dehydrogenase (DHA) and the value of average well color development (AWCD) could explain only 50% variation of the fungal flora in BRs. This paper indicated that resilience of fungal community in BRs was positively correlated with the BRs' improvement in fertility as well as biogeochemical properties, but alkalinity must be firstly decreased to the target level of BRs' rehabilitation.


Asunto(s)
Ceniza del Carbón , Microbiología del Suelo , Óxido de Aluminio , Silicatos de Aluminio , Filogenia , Suelo
19.
Chemistry ; 26(6): 1166-1195, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31479550

RESUMEN

Bryostatins are a class of naturally occurring macrocyclic lactones with a unique fast developing portfolio of clinical applications, including treatment of AIDS, Alzheimer's disease, and cancer. This comprehensive account summarizes the recent progress (2014-present) in the development of bryostatins, including their total synthesis and biomedical applications. An emphasis is placed on the discussion of bryostatin 1, the most-studied analogue to date. This review highlights the synthetic and biological challenges of bryostatins and provides an outlook on their future development.


Asunto(s)
Antineoplásicos/química , Brioestatinas/síntesis química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Brioestatinas/farmacología , Brioestatinas/uso terapéutico , Senescencia Celular/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , Humanos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo
20.
Xenotransplantation ; 27(1): e12556, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31578787

RESUMEN

BACKGROUND: The dysfunction of islet grafts is generally attributed to hypoxia-induced damage. Mesenchymal stem cells (MSCs) are currently thought to effectively protect cells from various risk factors via regulating autophagy. In our study, we investigated if human umbilical cord-derived MSCs could ameliorate hypoxia-induced apoptosis in porcine islets by modulating autophagy, and we explored the underlying mechanisms. METHODS: Neonatal porcine islet cell clusters (NICCs) were cultured with human umbilical cord-derived MSC conditioned medium (huc-MSC-CM) and RPMI-1640 medium (control) under hypoxic conditions (1% O2 ) in vitro. NICCs were treated with 3-methyladenine (3-MA) and chloroquine (CQ) to examine the role of huc-MSC-CM in regulating autophagy. Finally, the levels of several cytokines secreted by huc-MSCs were detected by ELISAs, and the corresponding inhibitors were applied to investigate which cytokine mediates the protective effects of huc-MSC-CM. The effects of huc-MSC-CM on NICCs viability and autophagy were examined using AO/PI staining, flow cytometry analysis, transmission electron microscopy (TEM) and confocal fluorescence microscopy analysis. The insulin secretion of NICCs was tested with an insulin immunoradiometric assay kit. RESULTS: Compared to the control, the huc-MSC-CM treatment improved the viability of NICCs, inhibited apoptosis, increased autophagic activity and the levels of PI3K class III and phosphorylated Akt, while the ratio of phosphorylated mTOR/mTOR was reduced. These changes were reversed by CQ and 3-MA treatments. High concentrations of IL-6 were detected in hu-MSC-CM. Furthermore, recombinant IL-6 pre-treatment exerted similar effects as huc-MSC-CM, and these effects were reversed by a specific inhibitor of IL-6 (Sarilumab). CONCLUSIONS: Our results demonstrated that huc-MSC-CM improved islet viability and function by increasing autophagy through the PI3K/Akt/mTOR pathway under hypoxic conditions. Additionally, IL-6 plays an important role in the function of huc-MSC-CM.


Asunto(s)
Hipoxia/metabolismo , Islotes Pancreáticos/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Animales Recién Nacidos , Autofagia , Muerte Celular , Células Cultivadas , Medios de Cultivo Condicionados , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Porcinos , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA