Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103644

RESUMEN

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Asunto(s)
Mutación , Sialiltransferasas , Humanos , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos , Simulación por Computador , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Mutación Puntual , Conformación Proteica en Lámina beta , Transporte de Proteínas , Bosques Aleatorios , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
2.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042483

RESUMEN

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Asunto(s)
Fucosa , Inflamación , Lipopolisacáridos , Animales , Humanos , Ratones , Receptor gp130 de Citocinas , Fucosa/farmacología , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , ARN Mensajero
3.
J Biol Chem ; 299(7): 104905, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302553

RESUMEN

A primary pathology of Alzheimer's disease (AD) is amyloid ß (Aß) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aß precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aß production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aß production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Asunto(s)
Acetilgalactosamina , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Angiopatía Amiloide Cerebral , Glicosilación , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/biosíntesis , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Células Endoteliales/metabolismo , Transporte de Proteínas , Neuronas/metabolismo , Aparato de Golgi/metabolismo , Acetilgalactosamina/metabolismo
4.
J Hum Genet ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177398

RESUMEN

AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-function relationships from protein 3D structure models and can serve as a template or a reference for experimental structural analysis including X-ray crystallography, NMR and cryo-EM analysis. Its use is expanding among researchers, not only in structural biology but also in other research fields. Researchers are currently exploring the full potential of AlphaFold-generated protein models. Predicting disease severity caused by missense mutations is one such application. This article provides an overview of the 3D structural modeling of AlphaFold based on deep learning techniques and highlights the challenges in predicting the pathogenicity of missense mutations.

5.
Cell ; 139(2): 352-65, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837036

RESUMEN

Many eukaryotic proteins are attached to the cell surface via glycosylphosphatidylinositol (GPI) anchors. How GPI-anchored proteins (GPI-APs) are trafficked from the endoplasmic reticulum (ER) to the cell surface is poorly understood, but the GPI moiety has been postulated to function as a signal for sorting and transport. Here, we established mutant cells that were selectively defective in transport of GPI-APs from the ER to the Golgi. We identified a responsible gene, designated PGAP5 (post-GPI-attachment to proteins 5). PGAP5 belongs to a dimetal-containing phosphoesterase family and catalyzed the remodeling of the glycan moiety on GPI-APs. PGAP5 catalytic activity is a prerequisite for the efficient exit of GPI-APs from the ER. Our data demonstrate that GPI glycan acts as an ER-exit signal and suggest that glycan remodeling mediated by PGAP5 regulates GPI-AP transport in the early secretory pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Polisacáridos/metabolismo , Animales , Glicoproteínas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Humanos , Ratones , Hidrolasas Diéster Fosfóricas/genética
6.
Magn Reson Chem ; 62(6): 439-451, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38235950

RESUMEN

Solution nuclear magnetic resonance (NMR) analysis of polysaccharides can provide valuable information not only on their primary structures but also on their conformation, dynamics, and interactions under physiological conditions. One of the main problems is that non-anomeric 1H signals typically overlap, and this often hinders detailed NMR analysis. Isotope enrichment, such as with 13C and 15N, will add a new dimension to the NMR spectra of polysaccharides, and spectral analysis can be performed with enhanced sensitivity using isolated peaks. For this purpose, here we have prepared uniformly 13C- and/or 15N-labeled chondroitin polysaccharides -4)-ß-D-glucuronopyranosyl-(1-3)-2-acetamido-2-deoxy-ß-D-galactopyranosyl-(1- with molecular weights in the range from 310 to 460 k by bacterial fermentation. The enrichment ratios for 13C and 15N were 98.9 and 99.8%, respectively, based on the mass spectrometric analysis of the constituent chondroitin disaccharides. 1H and 13C NMR signals were assigned mainly based on HSQC and 13C-detection experiments including INADEQUATE, HETCOR, and HETCOR-TOCSY. The carbonyl carbon signal of the N-acetyl-ß-D-galactosamine residue was unambiguously distinguished from the C6 carbon of the ß-D-glucuronic acid residue by the observation of 13C peak splitting due to 1JCN coupling in 13C- and 15N-labeled chondroitin. The T2* and T1 were measured and indicate that both rigid and mobile sites are present in the long sequence of chondroitin. The conformation, dynamics, and interactions of chondroitin and its derivatives will be further analyzed based on the results obtained in this study.


Asunto(s)
Isótopos de Carbono , Espectroscopía de Resonancia Magnética , Peso Molecular , Isótopos de Nitrógeno , Espectroscopía de Resonancia Magnética/métodos , Condroitín/química
7.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474585

RESUMEN

Ribitol (C5H12O5) is an acyclic sugar alcohol that was recently identified in O-mannose glycan on mammalian α-dystroglycan. The conformation and dynamics of acyclic sugar alcohols such as ribitol are dependent on the stereochemistry of the hydroxyl groups; however, the dynamics are not fully understood. To gain insights into the conformation and dynamics of sugar alcohols, we carried out comparative analyses of ribitol, d-arabitol and xylitol by a crystal structure database search, solution NMR analysis and molecular dynamics (MD) simulations. The crystal structures of the sugar alcohols showed a limited number of conformations, suggesting that only certain stable conformations are prevalent among all possible conformations. The three-bond scholar coupling constants and exchange rates of hydroxyl protons were measured to obtain information on the backbone torsion angle and possible hydrogen bonding of each hydroxyl group. The 100 ns MD simulations indicate that the ribitol backbone has frequent conformational transitions with torsion angles between 180∘ and ±60∘, while d-arabitol and xylitol showed fewer conformational transitions. Taking our experimental and computational data together, it can be concluded that ribitol is more flexible than d-arabitol or xylitol, and the flexibility is at least in part defined by the configuration of the OH groups, which may form intramolecular hydrogen bonds.


Asunto(s)
Ribitol , Xilitol , Simulación de Dinámica Molecular , Alcoholes del Azúcar
8.
Glycobiology ; 33(2): 150-164, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36373215

RESUMEN

This report describes the isolation and characterization of two new antibodies, R-6C (IgM) and R-13E (IgM), which were generated in C57BL/6 mice (Mus musculus) using the Tic (JCRB1331) human induced pluripotent cell (hiPSC) line as an antigen, and their comparisons with two existing antibodies, R-10G (IgG1) and R-17F (IgG1). Their epitopes were studied by western blotting after various glycosidase digestions, binding analyses using enzyme-linked immunosorbent assays (ELISAs) and microarrays with various synthetic oligosaccharides. The minimum epitope structures identified were: Siaα2-3Galß1-3GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-6C), Fucα1-2Galß1-3GlcNAcß1-3Galß1 (R-13E), Galß1-4GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-10G), and Fucα1-2Galß1-3GlcNAß1-3Galß1-4Glc (lacto-N-fucopentaose I) (R-17F). Most glycoprotein epitopes are expressed as O-glycans. The common feature of these epitopes is the presence of an N-acetyllactosamine type 1 structure (Galß1-3GlcNAc) at their nonreducing termini, followed by a type 2 structure (Galß1-4GlcNAc); this arrangement comprises a type 1-type 2 motif. This motif is also shared by TRA-1-60, a traditional onco-fetal antigen. In contrast, the R-10G epitope has a type 2-type 2 motif. Among these antibodies, R-17F and R-13E exhibit cytotoxic activity toward hiPSCs. R-17F and R-13E exhibit extremely high similarity in the amino acid sequences in their complementarity-determining regions (CDRs), which is consistent with their highly similar glycan recognition. These antibodies are excellent tools for investigating the biological functions of glycoconjugates in hiPSCs/hESCs; they could be useful for the selection, isolation and selective killing of such undifferentiated pluripotent stem cells.


Asunto(s)
Sulfato de Queratano , Oligosacáridos , Ratones , Animales , Humanos , Sulfato de Queratano/química , Ratones Endogámicos C57BL , Oligosacáridos/química , Polisacáridos/química , Epítopos/química , Inmunoglobulina G , Inmunoglobulina M
9.
Chembiochem ; 24(5): e202200444, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219527

RESUMEN

In the endoplasmic reticulum glycoprotein quality control system, UDP-glucose : glycoprotein glucosyltransferase (UGGT) functions as a folding sensor. Although it is known to form a heterodimer with selenoprotein F (SelenoF), the details of the complex formation remain obscure. A pulldown assay using co-transfected SelenoF and truncated mutants of human UGGT1 (HUGT1) revealed that SelenoF binds to the TRXL2 domain of HUGT1. Additionally, a newly developed photoaffinity crosslinker was selectively introduced into cysteine residues of recombinant SelenoF to determine the spatial orientation of SelenoF to HUGT1. The crosslinking experiments showed that SelenoF formed a covalent bond with amino acids in the TRXL3 region and the interdomain between ßS2 and GT24 of HUGT1 via the synthetic crosslinker. SelenoF might play a role in assessing and refining the disulfide bonds of misfolded glycoproteins in the hydrophobic cavity of HUGT1 as it binds to the highly flexible region of HUGT1 to reach its long hydrophobic cavity. Clarification of the SelenoF-binding domain of UGGT and its relative position will help predict and reveal the function of SelenoF from a structural perspective.


Asunto(s)
Glucosiltransferasas , Glicoproteínas , Humanos , Glucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Uridina Difosfato , Selenoproteínas , Glucosa/metabolismo , Pliegue de Proteína
10.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047057

RESUMEN

Cerebrospinal fluid (CSF) plays an important role in the homeostasis of the brain. We previously reported that CSF major glycoproteins are biosynthesized in the brain, i.e., lipocalin-type prostaglandin D2 synthase (L-PGDS) and transferrin isoforms carrying unique glycans. Although these glycoproteins are secreted from distinct cell types, their CSF levels have been found to be highly correlated with each other in cases of neurodegenerative disorders. The aim of this study was to examine these marker levels and their correlations in other neurological diseases, such as depression and schizophrenia, and disorders featuring abnormal CSF metabolism, including spontaneous intracranial hypotension (SIH) and idiopathic normal pressure hydrocephalus (iNPH). Brain-derived marker levels were found to be highly correlated with each other in the CSF of depression and schizophrenia patients. SIH is caused by CSF leakage, which is suspected to induce hypovolemia and a compensatory increase in CSF production. In SIH, the brain-derived markers were 2-3-fold higher than in other diseases, and, regardless of their diverse levels, they were found to be correlated with each other. Another abnormality of the CSF metabolism, iNPH, is possibly caused by the reduced absorption of CSF, which secondarily induces CSF accumulation in the ventricle; the excess CSF compresses the brain's parenchyma to induce dementia. One potential treatment is a "shunt operation" to bypass excess CSF from the ventricles to the peritoneal cavity, leading to the attenuation of dementia. After the shunt operation, marker levels began to increase within a week and then further increased by 2-2.5-fold at three, six, and twelve months post-operation, at which point symptoms had gradually attenuated. Notably, the marker levels were found to be correlated with each other in the post-operative period. In conclusion, the brain-derived major glycoprotein markers were highly correlated in the CSF of patients with different neurological diseases, and their correlations were maintained even after surgical intervention. These results suggest that brain-derived proteins could be biomarkers of CSF production.


Asunto(s)
Demencia , Hidrocefalia , Enfermedades del Sistema Nervioso , Humanos , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Glicoproteínas/metabolismo , Hidrocefalia/metabolismo , Demencia/metabolismo , Biomarcadores/metabolismo
11.
Nat Chem Biol ; 16(7): 756-765, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32284601

RESUMEN

Soluble prion proteins contingently encounter foreign prion aggregates, leading to cross-species prion transmission. However, how its efficiency is regulated by structural fluctuation of the host soluble prion protein remains unsolved. In the present study, through the use of two distantly related yeast prion Sup35 proteins, we found that a specific conformation of a short disordered segment governs interspecies prion transmissibility. Using a multidisciplinary approach including high-resolution NMR and molecular dynamics simulation, we identified critical residues within this segment that allow interspecies prion transmission in vitro and in vivo, by locally altering dynamics and conformation of soluble prion proteins. Remarkably, subtle conformational differences caused by a methylene group between asparagine and glutamine sufficed to change the short segment structure and substantially modulate the cross-seeding activity. Thus, our findings uncover how conformational dynamics of the short segment in the host prion protein impacts cross-species prion transmission. More broadly, our study provides mechanistic insights into cross-seeding between heterologous proteins.


Asunto(s)
Asparagina/química , Glutamina/química , Proteínas Intrínsecamente Desordenadas/química , Factores de Terminación de Péptidos/química , Priones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Asparagina/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutamina/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Priones/metabolismo , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
12.
Am J Med Genet A ; 188(9): 2590-2598, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35775650

RESUMEN

Childhood-onset forms of hereditary spastic paraplegia are ultra-rare diseases and often present with complex features. Next-generation-sequencing allows for an accurate diagnosis in many cases but the interpretation of novel variants remains challenging, particularly for missense mutations. Where sufficient knowledge of the protein function and/or downstream pathways exists, functional studies in patient-derived cells can aid the interpretation of molecular findings. We here illustrate the case of a 13-year-old female who presented with global developmental delay and later mild intellectual disability, progressive spastic diplegia, spastic-ataxic gait, dysarthria, urinary urgency, and loss of deep tendon reflexes of the lower extremities. Exome sequencing showed a novel splice-site variant in trans with a novel missense variant in B4GALNT1 [NM_001478.5: c.532-1G>C/c.1556G>C (p.Arg519Pro)]. Functional studies in patient-derived fibroblasts and cell models of GM2 synthase deficiency confirmed a loss of B4GALNT1 function with no synthesis of GM2 and other downstream gangliosides. Collectively these results established the diagnosis of B4GALNT1-associated HSP (SPG26). Our approach illustrates the importance of careful phenotyping and functional characterization of novel gene variants, particularly in the setting of ultra-rare diseases, and expands the clinical and molecular spectrum of SPG26, a disorder of complex ganglioside biosynthesis.


Asunto(s)
Paraplejía Espástica Hereditaria , Adolescente , Niño , Femenino , Gangliósidos/genética , Humanos , Mutación , Linaje , Enfermedades Raras , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética
13.
Org Biomol Chem ; 20(43): 8489-8500, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36268609

RESUMEN

Matriglycan, a polysaccharide that is a pivotal part of the core M3 O-mannosyl glycan composed of the repeating disaccharide -3Xylα1-3GlcAß1-, interacts with laminin to stabilize muscle tissue. We herein report the synthesis of matriglycan-repeating hexasaccharides equipped with an alkyne linker to form glycoconjugates. The key step in the formation of an α-linked xylosyl glycoside was resolved by solvent-specific separation from an anomeric mixture. Successful glycan elongation was regio- and stereoselectively performed to obtain (-3Xylα1-3GlcAß1)3-O(C2H4O)3CH2CCH and the biotin conjugate. We also investigated interactions between matriglycan hexasaccharides and laminin-G-like domains 4 and 5 of laminin-α2 using saturation transfer difference-NMR. The dissociation constant obtained from bio-layer interferometry was estimated to be 7.5 × 10-8 M. These results indicate that a chemical approach may be applied to the reconstruction of muscle tissue.


Asunto(s)
Laminina , Polisacáridos , Laminina/química , Laminina/metabolismo , Glicosilación
14.
Brain ; 144(5): 1451-1466, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33855352

RESUMEN

Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.


Asunto(s)
ADN Ligasa (ATP)/genética , Enfermedades Gastrointestinales/genética , Motilidad Gastrointestinal/genética , Encefalomiopatías Mitocondriales/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Animales , Femenino , Enfermedades Gastrointestinales/patología , Humanos , Masculino , Encefalomiopatías Mitocondriales/patología , Mutación , Linaje , Pez Cebra
15.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887202

RESUMEN

Anti-mucin1 (MUC1) antibodies have been widely used for breast cancer diagnosis and treatment. This is based on the fact that MUC1 undergoes aberrant glycosylation upon cancer progression, and anti-MUC1 antibodies differentiate changes in glycan structure. MY.1E12 is a promising anti-MUC1 antibody with a distinct specificity toward MUC1 modified with an immature O-glycan (NeuAcα(2-3)Galß(1-3)GalNAc) on a specific Thr. However, the structural basis for the interaction between MY.1E12 and MUC1 remains unclear. The aim of this study is to elucidate the mode of interaction between MY.1E12 and MUC1 O-glycopeptide by NMR, molecular dynamics (MD) and docking simulations. NMR titration using MUC1 O-glycopeptides suggests that the epitope is located within the O-linked glycan and near the O-glycosylation site. MD simulations of MUC1 glycopeptide showed that the O-glycosylation significantly limits the flexibility of the peptide backbone and side chain of the O-glycosylated Thr. Docking simulations using modeled MY.1E12 Fv and MUC1 O-glycopeptide, suggest that VH mainly contributes to the recognition of the MUC1 peptide portion while VL mainly binds to the O-glycan part. The VH/VL-shared recognition mode of this antibody may be used as a template for the rational design and development of anti-glycopeptide antibodies.


Asunto(s)
Glicopéptidos , Simulación de Dinámica Molecular , Anticuerpos Monoclonales , Glicopéptidos/química , Espectroscopía de Resonancia Magnética , Mucina-1/metabolismo , Polisacáridos/química
16.
J Biol Chem ; 295(16): 5257-5277, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32144204

RESUMEN

ß-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form ß-cholesterylglucoside (ß-GlcChol) in vitro ß-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate ß-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (ß-GalChol), in addition to ß-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for ß-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for ß-GalChol formation. Liquid chromatography-tandem MS revealed that ß-GlcChol and ß-GalChol are present throughout development from embryo to adult in the mouse brain. We found that ß-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of ß-GalChol biosynthesis appeared to be during myelination. We also found that ß-GlcChol and ß-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form ß-GalChol. This is the first report of the existence of ß-GalChol in vertebrates and how ß-GlcChol and ß-GalChol are formed in the brain.


Asunto(s)
Encéfalo/metabolismo , Colesterol/análogos & derivados , Glucosilceramidasa/metabolismo , Animales , Encéfalo/citología , Línea Celular Tumoral , Células Cultivadas , Colesterol/metabolismo , Femenino , Galactosa/metabolismo , Galactosilceramidas/metabolismo , Glucosilceramidasa/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Oryzias , Ratas , Ratas Wistar
17.
Curr Top Microbiol Immunol ; 429: 147-176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31781867

RESUMEN

Carbohydrate recognition is an essential function occurring in all living organisms. Lectins are carbohydrate-binding proteins and are classified into several families. In mammals, Ca2+-dependent C-type lectins, such as ß-galactoside-binding galectin and sialic acid-binding siglec, play crucial roles in the immune response and homeostasis. C-type lectins are abundant and diverse in animals. Their immunological activities include lymphocyte homing, pathogen recognition, and clearance of apoptotic bodies. C-type lectin domains are composed of 110-130 amino acid residues with highly conserved structural folds. Remarkably, individual lectins can accept a wide variety of sugar ligands and can distinguish subtle structural differences in closely related ligands. In addition, several C-type lectin-like proteins specifically bind to carbohydrate ligands in Ca2+-independent ways. The accumulated 3D structural evidence clarifies the unexpected structural versatility of C-type lectins underlying the variety of ligand binding modes. In this issue, we focus on the structural aspects of carbohydrate recognition mechanisms of C-type lectins and C-type lectin-like proteins.


Asunto(s)
Carbohidratos , Lectinas Tipo C , Secuencia de Aminoácidos , Animales , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligandos
18.
Chem Rec ; 21(11): 3005-3014, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33886147

RESUMEN

Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals in which cytotoxic agents are conjugated to monoclonal antibodies (mAbs), allowing targeted drug delivery. Present heterogeneous ADCs (conjugated in random variable positions) suffered from issues of stability, reproducibility, efficacy, etc. Recent advances have led to the development of homogeneous ADC preparations by site-specific conjugation, allowing the control of the drug-to-antibody ratio. These approaches have increased the therapeutic window, efficacy, and batch-to-batch consistency of the ADC preparations. Antibodies carry a pair of heterogeneous N-glycans in the Fc regions, which are critical for antibody function. Drug conjugation through glycoengineering has been achieved with different approaches, including the use of endo-ß-N-acetylglucosaminidase (ENGases) and monosaccharyl transferase mutants. In this article, we summarize different glycoengineering approaches for antibody-drug conjugation, and discuss their advantages for the development of next-generation homogeneous ADCs.


Asunto(s)
Inmunoconjugados , Anticuerpos Monoclonales , Sistemas de Liberación de Medicamentos , Polisacáridos , Reproducibilidad de los Resultados
19.
Mol Cell Proteomics ; 18(10): 2044-2057, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375533

RESUMEN

Glycoproteins are decorated with complex glycans for protein functions. However, regulation mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. Many glycosyltransferases for N-glycan terminals were revealed to prefer a nonbisected N-glycan as a substrate to its bisected counterpart, whereas no up-regulation of their mRNAs was found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular dynamics simulations further confirmed that nonbisected glycans were preferentially accepted by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-glycosylation.


Asunto(s)
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/genética , Polisacáridos/química , Polisacáridos/genética , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Ratones , Simulación de Dinámica Molecular , Mutación , N-Acetilglucosaminiltransferasas/metabolismo , Especificidad por Sustrato
20.
Proc Natl Acad Sci U S A ; 115(10): 2389-2394, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467288

RESUMEN

Self-propagating ß-sheet-rich fibrillar protein aggregates, amyloid fibers, are often associated with cellular dysfunction and disease. Distinct amyloid conformations dictate different physiological consequences, such as cellular toxicity. However, the origin of the diversity of amyloid conformation remains unknown. Here, we suggest that altered conformational equilibrium in natively disordered monomeric proteins leads to the adaptation of alternate amyloid conformations that have different phenotypic effects. We performed a comprehensive high-resolution structural analysis of Sup35NM, an N-terminal fragment of the Sup35 yeast prion protein, and found that monomeric Sup35NM harbored latent local compact structures despite its overall disordered conformation. When the hidden local microstructures were relaxed by genetic mutations or solvent conditions, Sup35NM adopted a strikingly different amyloid conformation, which redirected chaperone-mediated fiber fragmentation and modulated prion strain phenotypes. Thus, dynamic conformational fluctuations in natively disordered monomeric proteins represent a posttranslational mechanism for diversification of aggregate structures and cellular phenotypes.


Asunto(s)
Amiloide , Factores de Terminación de Péptidos , Priones , Proteínas de Saccharomyces cerevisiae , Amiloide/química , Amiloide/metabolismo , Cinética , Resonancia Magnética Nuclear Biomolecular , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/química , Priones/genética , Priones/metabolismo , Conformación Proteica , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA