Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(15): 2502-2510, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37216648

RESUMEN

Limb-girdle muscular dystrophy R7 (LGMDR7) is an autosomal recessive hereditary muscular dystrophy caused by mutations in titin-cap (TCAP). Here, we summarized the clinical characteristics and TCAP mutations in a Chinese cohort of 30 patients with LGMDR7. The onset age of Chinese patients was 19.89 ± 6.70 years old, which is later than European and South Asian patients (P < 0.05). Clinically speaking, 20.0% of patients presented with predominant distal weakness, and 73.3% of patients presented with predominant pelvic girdle weakness. Radiological study revealed semitendinosus and magnus adductor were severely involved in Chinese LGMDR7 patients. Rectus femoris, vastus lateralis, vastus intermedius, soleus and tibialis anterior were moderately to severely involved. The most prevalent mutation in this cohort is c.26_33dupAGGTGTCG, while c.165dupG and c.110 + 5G > A are unique in Chinese population as two of the common mutations. Besides, variant c.26_33dupAGGGTGTCG might be a founder mutation in Asian patients. Internal nuclei, lobulated fibers, and scattered rimmed vacuoles were typical morphological changes in Chinese LGMDR7 patients. This is the largest LGMDR7 cohort in the Chinese population and in the world. This article also expands the clinical, pathological, mutational and radiological spectrum of patients with LGMDR7 in China and in the world.


Asunto(s)
Pueblos del Este de Asia , Distrofia Muscular de Cinturas , Adolescente , Adulto , Humanos , Adulto Joven , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación
2.
Am J Hum Genet ; 109(3): 533-541, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148830

RESUMEN

Recent studies indicate that CGG repeat expansions in LRP12, GIPC1, and NOTCH2NLC are associated with oculopharyngodistal myopathy (OPDM) types 1, 2, and 3, respectively. However, some clinicopathologically confirmed OPDM cases continue to have unknown genetic causes. Here, through a combination of long-read whole-genome sequencing (LRS), repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis PCR (AL-PCR), we found that a CGG repeat expansion in the 5' UTR of RILPL1 is associated with familial and simplex OPDM type 4 (OPDM4). The number of repeats ranged from 139 to 197. Methylation analysis indicates that the methylation levels in RILPL1 were unaltered in OPDM4 individuals. Analyses of muscle biopsies suggested that the expanded CGG repeat might be translated into a toxic poly-glycine protein that co-localizes with p62 in intranuclear inclusions. Moreover, analyses suggest that the toxic RNA gain-of-function effects also contributed to the pathogenesis of this disease. Intriguingly, all four types of OPDM have been found to be associated with the CGG repeat expansions located in 5' UTRs. This finding suggests that a common pathogenic mechanism, driven by the CGG repeat expansion, might underlie all cases of OPDM.


Asunto(s)
Distrofias Musculares , Expansión de Repetición de Trinucleótido , Regiones no Traducidas 5' , Proteínas Adaptadoras Transductoras de Señales , Humanos , Cuerpos de Inclusión Intranucleares/genética , Distrofias Musculares/genética , Expansión de Repetición de Trinucleótido/genética
3.
J Pathol ; 263(1): 8-21, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38332735

RESUMEN

Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Glicoproteínas , Humanos , Ratones , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Glucógeno/análisis , Glucógeno/metabolismo , Glucosiltransferasas/metabolismo , Músculo Esquelético/patología , Lisosomas/metabolismo
4.
Brain ; 147(1): 100-108, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37584389

RESUMEN

Recently, an astrocytic aquaporin 4-dependent drainage system, that is, the glymphatic system, has been identified in the live murine and human brain. Growing evidence suggests that glymphatic function is impaired in patients with several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. As the third most common neurodegenerative disease, although animal studies have indicated that early glymphatic dysfunction is likely an important pathological mechanism underpinning amyotrophic lateral sclerosis (ALS), no available study has been conducted to thoroughly assess glymphatic function in vivo in ALS patients to date, particularly in patients with early-stage ALS. Thus, using diffusion tensor imaging analysis along the perivascular space (ALPS) index, an approximate measure of glymphatic function in vivo, we aimed to explore whether glymphatic function is impaired in patients with patients with early-stage ALS, and the diagnostic performance of the ALPS index in distinguishing between patients with early-stage ALS and healthy subjects. We also aimed to identify the relationships between glymphatic dysfunction and clinical disabilities and sleep problems in patients with early-stage ALS. In this retrospective study, King's Stage 1 ALS patients were defined as patients with early-stage ALS. We enrolled 56 patients with early-stage ALS and 32 age- and sex-matched healthy control subjects. All participants completed clinical screening, sleep assessment and ALPS index analysis. For the sleep assessment, the Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale and polysomnography were used. Compared with healthy control subjects, patients with early-stage ALS had a significantly lower ALPS index after family-wise error correction (P < 0.05). Moreover, receiver operating characteristic analysis showed that the area under the curve for the ALPS index was 0.792 (95% confidence interval 0.700-0.884). Partial correlation analyses showed that the ALPS index was significantly correlated with clinical disability and sleep disturbances in patients with early-stage ALS. Multivariate analysis showed that sleep efficiency (r = 0.419, P = 0.002) and periodic limb movements in sleep index (r = -0.294, P = 0.017) were significant predictive factors of the ALPS index in patients with early-stage ALS. In conclusion, our study continues to support an important role for glymphatic dysfunction in ALS pathology, and we provide additional insights into the early diagnostic value of glymphatic dysfunction and its correlation with sleep disturbances in vivo in patients with early-stage ALS. Moreover, we suggest that early improvement of glymphatic function may be a promising strategy for slowing the neurodegenerative process in ALS. Future studies are needed to explore the diagnostic and therapeutic value of glymphatic dysfunction in individuals with presymptomatic-stage neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/complicaciones , Imagen de Difusión Tensora , Estudios Retrospectivos , Acuaporina 4
5.
J Med Genet ; 61(4): 325-331, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37890998

RESUMEN

BACKGROUND: Mutations in the tropomyosin receptor kinase fused (TFG) gene are associated with various neurological disorders, including autosomal recessive hereditary spastic paraplegia (HSP), autosomal dominant hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) and autosomal dominant type of Charcot-Marie-Tooth disease type 2. METHODS: Whole genome sequencing and whole-exome sequencing were used, followed by Sanger sequencing for validation. Haplotype analysis was performed to confirm the inheritance mode of the novel TFG mutation in a large Chinese family with HSP. Additionally, another family diagnosed with HMSN-P and carrying the reported TFG mutation was studied. Clinical data and muscle pathology comparisons were drawn between patients with HSP and patients with HMSN-P. Furthermore, functional studies using skin fibroblasts derived from patients with HSP and patients with HMSN-P were conducted to investigate the pathomechanisms of TFG mutations. RESULTS: A novel heterozygous TFG variant (NM_006070.6: c.125G>A (p.R42Q)) was identified and caused pure HSP. We further confirmed that the well-documented recessively inherited spastic paraplegia, caused by homozygous TFG mutations, exists in a dominantly inherited form. Although the clinical features and muscle pathology between patients with HSP and patients with HMSN-P were distinct, skin fibroblasts derived from both patient groups exhibited reduced levels of autophagy-related proteins and the presence of TFG-positive puncta. CONCLUSIONS: Our findings suggest that autophagy impairment may serve as a common pathomechanism among different clinical phenotypes caused by TFG mutations. Consequently, targeting autophagy may facilitate the development of a uniform treatment for TFG-related neurological disorders.


Asunto(s)
Neuropatía Hereditaria Motora y Sensorial , Enfermedades del Sistema Nervioso , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Proteínas/genética , Mutación/genética , Linaje , Paraplejía , Proteínas de Transporte Vesicular/genética
6.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37923380

RESUMEN

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Asunto(s)
Distrofias Musculares , Adulto , Humanos , Distrofias Musculares/genética , Fenotipo , Cuerpos de Inclusión Intranucleares/genética , Expansión de Repetición de Trinucleótido/genética
7.
BMC Genomics ; 25(1): 538, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822239

RESUMEN

BACKGROUND: Mitochondrial diseases (MDs) can be caused by single nucleotide variants (SNVs) and structural variants (SVs) in the mitochondrial genome (mtDNA). Presently, identifying deletions in small to medium-sized fragments and accurately detecting low-percentage variants remains challenging due to the limitations of next-generation sequencing (NGS). METHODS: In this study, we integrated targeted long-range polymerase chain reaction (LR-PCR) and PacBio HiFi sequencing to analyze 34 participants, including 28 patients and 6 controls. Of these, 17 samples were subjected to both targeted LR-PCR and to compare the mtDNA variant detection efficacy. RESULTS: Among the 28 patients tested by long-read sequencing (LRS), 2 patients were found positive for the m.3243 A > G hotspot variant, and 20 patients exhibited single or multiple deletion variants with a proportion exceeding 4%. Comparison between the results of LRS and NGS revealed that both methods exhibited similar efficacy in detecting SNVs exceeding 5%. However, LRS outperformed NGS in detecting SNVs with a ratio below 5%. As for SVs, LRS identified single or multiple deletions in 13 out of 17 cases, whereas NGS only detected single deletions in 8 cases. Furthermore, deletions identified by LRS were validated by Sanger sequencing and quantified in single muscle fibers using real-time PCR. Notably, LRS also effectively and accurately identified secondary mtDNA deletions in idiopathic inflammatory myopathies (IIMs). CONCLUSIONS: LRS outperforms NGS in detecting various types of SNVs and SVs in mtDNA, including those with low frequencies. Our research is a significant advancement in medical comprehension and will provide profound insights into genetics.


Asunto(s)
ADN Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico , Femenino , Masculino , Análisis de Secuencia de ADN/métodos , Adulto , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa/métodos
8.
Hum Mol Genet ; 31(7): 1115-1129, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34718578

RESUMEN

To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency (MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner, we studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up study were performed. We showed that fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers (aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. In conclusion, fibers with cracks, aRRFs and diffuse decreased SDH activity could distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.


Asunto(s)
Proteínas Hierro-Azufre , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Acilcoenzima A/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Estudios de Seguimiento , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Estudios Retrospectivos , Riboflavina/genética , Riboflavina/uso terapéutico
9.
J Transl Med ; 22(1): 449, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741129

RESUMEN

Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.


Asunto(s)
ADN Mitocondrial , Fibroblastos , Lisosomas , Mitocondrias , Encefalomiopatías Mitocondriales , Nucleósidos , Timidina Fosforilasa , Humanos , Lisosomas/metabolismo , Timidina Fosforilasa/metabolismo , Timidina Fosforilasa/deficiencia , Timidina Fosforilasa/genética , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/patología , Encefalomiopatías Mitocondriales/genética , Fibroblastos/metabolismo , Fibroblastos/patología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Nucleósidos/metabolismo , Seudoobstrucción Intestinal/metabolismo , Seudoobstrucción Intestinal/patología , Seudoobstrucción Intestinal/enzimología , Seudoobstrucción Intestinal/genética , Oftalmoplejía/metabolismo , Oftalmoplejía/patología , Oftalmoplejía/congénito , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Masculino , Femenino , Piel/patología , Piel/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo
10.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228875

RESUMEN

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Asunto(s)
Proteínas Hierro-Azufre , Errores Innatos del Metabolismo Lipídico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Distrofias Musculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Humanos , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Acilcoenzima A/uso terapéutico , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapéutico
11.
Neuropathol Appl Neurobiol ; 50(4): e12996, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982616

RESUMEN

AIM: Systemic amyloidosis is a condition in which misfolded amyloid fibrils are deposited within tissues. Amyloid myopathy is a rare manifestation of systemic amyloidosis. However, whether skeletal muscle involvement is underestimated and whether such deposition guarantees clinical and pathological myopathic features remain to be investigated. METHODS: We retrospectively reviewed patients with systemic amyloidosis, in whom skeletal muscle biopsies were performed at our centre between January 2018 and June 2023. In total, 28 patients with suspected systemic amyloidosis were included. Among these, 21 presented with cardiomyopathy but lacked myopathic symptoms. The clinical and pathological data of these patients were further analysed. The amyloid type was confirmed by immunohistochemistry. RESULTS: Twenty-eight patients with suspected systemic amyloidosis underwent muscle biopsy. Amyloid deposition in the skeletal muscle was confirmed in 24 patients, including 22 with light-chain amyloidosis (AL) and two with transthyretin amyloidosis (ATTR). Among the 24 patients, seven presented with muscle weakness and decreased muscle strength (Group 1, symptomatic myopathy), whereas the remaining 17 exhibited normal muscle strength (Group 2, asymptomatic myopathy). Group 1 included four patients with AL-λ, one with AL-κ and two with ATTR. Group 2 included 15 patients with AL-λ and two patients with AL-κ. In Group 1, six patients exhibited neuropathy, whereas only one patient in Group 2 presented with subclinical neuropathy on nerve conduction studies. Amyloid deposition in the interstitium was the most obvious change, observed in all 24 patients. Neuropathic changes, including denervation atrophy and muscle fibre grouping, were also common. Except for type 2 fibre atrophy, the other myopathic changes were mild and nonspecific. No sarcolemmal disruption was observed. Immunohistochemical analysis revealed marked positivity for MAC and MHC1 expression in the regions with amyloid deposits. Clinicopathological analysis revealed no significant differences in the extent of muscular amyloid deposition between the two groups. Nevertheless, patients in Group 1 displayed more pronounced neurogenic atrophy on skeletal muscle biopsies. CONCLUSIONS: Our study indicates that amyloid deposition in skeletal muscle is commonly observed but rarely causes symptomatic myopathy in systemic amyloidosis.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Masculino , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Enfermedades Musculares/patología , Enfermedades Musculares/metabolismo , Amiloidosis/patología , Amiloidosis/complicaciones , Amiloidosis/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/complicaciones , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Anciano de 80 o más Años , Adulto , Biopsia
12.
Cerebellum ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429489

RESUMEN

COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.

13.
J Stroke Cerebrovasc Dis ; 33(8): 107752, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701939

RESUMEN

BACKGROUND: Observational studies have suggested a potential association between abdominal viscera volume and increased risk of stroke. However, the causal relationship remains unclear. This study aims to utilize Mendelian randomization (MR) to explore the genetic causal relationship between them. METHODS: We conducted MR analysis to study the causal effects of five abdominal viscera volumes on stroke. The genetic variations of abdominal viscera volume were obtained from the UK Biobank, and the summary data for stroke and ischemic stroke were acquired from the MEGASTROKE consortium. This study employed inverse variance weighting (IVW), MR Egger, and weighted median methods. IVW served as the primary MR analysis method, supplemented by other sensitivity analyses to validate the robustness of the results. RESULTS: We found that liver volume can causally increase the risk of stroke [odds ratio (OR): 1.13, 95 % confidence interval (CI): 1.03-1.25, P = 0.013] and ischemic stroke (OR: 1.14, 95 % CI: 1.03-1.26, P = 0.012). No causal relationships between other abdominal viscera volumes and stroke and ischemic stroke appeared to be present (P > 0.05). Sensitivity analyses confirmed the robustness of the results. CONCLUSION: Our research findings indicate a causal relationship between liver volume and stroke, highlighting the potential role of liver volume in the onset of stroke. However, further basic and clinical research is needed to delve into the specific mechanisms underlying the relationship between liver volume and stroke, and to implement interventions aimed at reducing the impact of liver volume on stroke risk.

14.
J Am Chem Soc ; 145(41): 22609-22619, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37803879

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) is often accompanied by upregulation of homocysteine (Hcy). Excessive Hcy damages cerebral vascular endothelial cells and neurons, inducing neurotoxicity and even neurodegeneration. Normally, supplementation of vitamin B12 is an ideal intervention to reduce Hcy. However, vitamin B12 therapy is clinically inefficacious for CIRI. Considering oxidative stress is closely related to CIRI, the lysosome is the pivotal site for vitamin B12 transport. Lysosomal oxidative stress might hinder the transport of vitamin B12. Whether lysosomal malondialdehyde (lysosomal MDA), as the authoritative biomarker of lysosomal oxidative stress, interferes with the transport of vitamin B12 has not been elucidated. This is ascribed to the absence of effective methods for real-time and in situ measurement of lysosomal MDA within living brains. Herein, a fluorescence imaging agent, Lyso-MCBH, was constructed to specifically monitor lysosomal MDA by entering the brain and targeting the lysosome. Erupting the lysosomal MDA level in living brains of mice under CIRI was first observed using Lyso-MCBH. Excessive lysosomal MDA was found to affect the efficacy of vitamin B12 by blocking the transport of vitamin B12 from the lysosome to the cytoplasm. More importantly, the expression and function of the vitamin B12 transporter LMBD1 were proved to be associated with excessive lysosomal MDA. Altogether, the revealing of the lysosomal MDA-LMBD1 axis provides a cogent interpretation of the inefficacy of vitamin B12 in CIRI, which could be a prospective therapeutic target.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Ratones , Vitamina B 12/farmacología , Vitamina B 12/metabolismo , Malondialdehído/metabolismo , Células Endoteliales/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Lisosomas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Vitaminas/metabolismo , Homocisteína/metabolismo
15.
Am J Hum Genet ; 106(6): 793-804, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32413282

RESUMEN

Oculopharyngodistal myopathy (OPDM) is an adult-onset inherited neuromuscular disorder characterized by progressive ptosis, external ophthalmoplegia, and weakness of the masseter, facial, pharyngeal, and distal limb muscles. The myopathological features are presence of rimmed vacuoles (RVs) in the muscle fibers and myopathic changes of differing severity. Inheritance is variable, with either putative autosomal-dominant or autosomal-recessive pattern. Here, using a comprehensive strategy combining whole-genome sequencing (WGS), long-read whole-genome sequencing (LRS), linkage analysis, repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR), we identified an abnormal GGC repeat expansion in the 5' UTR of GIPC1 in one out of four families and three sporadic case subjects from a Chinese OPDM cohort. Expanded GGC repeats were further confirmed as the cause of OPDM in an additional 2 out of 4 families and 6 out of 13 sporadic Chinese individuals with OPDM, as well as 7 out of 194 unrelated Japanese individuals with OPDM. Methylation, qRT-PCR, and western blot analysis indicated that GIPC1 mRNA levels were increased while protein levels were unaltered in OPDM-affected individuals. RNA sequencing indicated p53 signaling, vascular smooth muscle contraction, ubiquitin-mediated proteolysis, and ribosome pathways were involved in the pathogenic mechanisms of OPDM-affected individuals with GGC repeat expansion in GIPC1. This study provides further evidence that OPDM is associated with GGC repeat expansions in distinct genes and highly suggests that expanded GGC repeat units are essential in the pathogenesis of OPDM, regardless of the genes in which the expanded repeats are located.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Distrofias Musculares/genética , Adolescente , Adulto , Pueblo Asiatico/genética , Cromosomas Humanos Par 19/genética , Metilación de ADN , Femenino , Humanos , Escala de Lod , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Linaje , RNA-Seq , Expansión de Repetición de Trinucleótido/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
16.
J Hum Genet ; 68(2): 97-101, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36446828

RESUMEN

The TNNT1 gene encoding the slow skeletal muscle TnT has been identified as a causative gene for nemaline myopathy. TNNT1 nemaline myopathy is mainly characterized by neonatal-onset muscle weakness, pectus carinatum and respiratory insufficiency. Herein, we report on a Chinese girl with TNNT1 nemaline myopathy with mild clinical phenotypes without thoracic deformities or decreased respiratory function. Muscle biopsy showed moderate to marked type 1 fiber atrophy and nemaline rods. Next-generation sequencing identified the compound heterozygous c. 587dupA (p. D196Efs*41) and c. 387+5G>A mutations in the TNNT1 gene according to the transcript NM_003283.4. RNA sequencing revealed complete exon 9 skipping caused by the c. 387+5G>A mutation. Through quantitative PCR, we found that both the truncation c. 587dupA (p. D196Efs*41) and the splicing c. 387+5G>A mutations triggered nonsense-mediated mRNA decay (NMD). Western blotting showed the residual amount of the truncated TNNT1 protein by deletion of exon 9, which may ameliorate the disease to some extent.


Asunto(s)
Miopatías Nemalínicas , Humanos , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Músculo Esquelético/patología , Mutación , Debilidad Muscular/genética , Exones/genética
17.
J Hum Genet ; 68(11): 777-782, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37407718

RESUMEN

Mutations in the TTN gene have been reported to be responsible for a range of neuromuscular disorders, including recessive distal myopathy and congenital myopathy (CM). Only five splicing mutations have been identified to induce aberrant mRNA splicing in TTN-related neuromuscular disorders. In our study, we described detailed clinical characteristics, muscle pathology and genetic analysis of two probands with TTN-related autosomal recessive neuromuscular disorders. Besides, we identified two novel intronic mutations, c.107377+1 G > C in intron 362 and c.19994-2 A > G in intron 68, in the two probands. Through cDNA analysis, we revealed the c.107377+1 G > C mutation induced retention of the entire intron 362, and the c.19994-2 A > G mutation triggered skipping of the first 11 bp of exon 69. Our study broadens the aberrant splicing spectrum of neuromuscular disorders caused by splicing mutations in the TTN gene.

18.
BMC Neurol ; 23(1): 192, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194001

RESUMEN

BACKGROUND: Pseudorabies virus (PRV) was thought to only infect animals. Recent studies have shown that it can also infect human. CASE PRESENTATION: We report a case of pseudorabies virus encephalitis and endophthalmitis, diagnosed 89 days after onset, confirmed with intraocular fluid metagenomic next generation sequencing (mNGS) after the result of two cerebrospinal fluid (CSF) mNGS tests were negative. Although treatment with intravenous acyclovir, foscarnet sodium, and methylprednisolone improved the symptoms of encephalitis, significant diagnostic delay resulted in permanent visual loss. CONCLUSIONS: This case suggests that pseudorabies virus (PRV) DNA in the intraocular fluid may have a higher positivity than that in the CSF. PRV may persist in the intraocular fluid for an extended period and may thus require extended antiviral therapy. Patients with severe encephalitis and PRV should be examined with the focus on pupil reactivity and light reflex. A fundus examination should be performed in patients with a central nervous system infection, specifically, those in a comatose state, to help reduce eye disability.


Asunto(s)
Humor Acuoso , Ceguera , Encefalitis Viral , Endoftalmitis , Herpesvirus Suido 1 , Seudorrabia , Seudorrabia/complicaciones , Seudorrabia/diagnóstico , Seudorrabia/tratamiento farmacológico , Encefalitis Viral/complicaciones , Encefalitis Viral/diagnóstico , Encefalitis Viral/tratamiento farmacológico , Endoftalmitis/diagnóstico , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/virología , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/aislamiento & purificación , Metagenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Diagnóstico Tardío , Humanos , Masculino , Persona de Mediana Edad , Humor Acuoso/virología , Aciclovir/uso terapéutico , Foscarnet/uso terapéutico , Metilprednisolona/uso terapéutico , Antivirales/uso terapéutico , Ceguera/virología , ADN Viral/aislamiento & purificación
19.
J Med Genet ; 59(1): 79-87, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208382

RESUMEN

BACKGROUND: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episode (MELAS) is a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. The causative mutations of MELAS have drawn much attention, among them, mutations in mitochondrial tRNA genes possessing prominent status. However, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear and there are very few effective therapies available to date. METHODS: We performed muscle histochemistry, genetic analysis, molecular dynamic stimulation and measurement of oxygen consumption rate and respiratory chain complex activities to demonstrate the molecular pathomechanisms of m.5541C>T mutation. Moreover, we use cybrid cells to investigate the potential of taurine to rescue mitochondrial dysfunction caused by this mutation. RESULTS: We found a pathogenic m.5541C>T mutation in the tRNATrp gene in a large MELAS family. This mutation first affected the maturation and stability of tRNATrp and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction. Surprisingly, we identified that the supplementation of taurine almost completely restored mitochondrial tRNATrp levels and mitochondrial respiration deficiency at the in vitro cell level. CONCLUSION: The m.5541C>T mutation disturbed the translation machinery of mitochondrial tRNATrp and taurine supplementation may be a potential treatment for patients with m.5541C>T mutation. Further studies are needed to explore the full potential of taurine supplementation as therapy for patients with this mutation.


Asunto(s)
Genoma Mitocondrial , Síndrome MELAS/genética , Mitocondrias/metabolismo , Mutación , ARN de Transferencia de Triptófano/genética , Adulto , Línea Celular , ADN Mitocondrial , Femenino , Humanos , Simulación de Dinámica Molecular
20.
Hum Brain Mapp ; 43(18): 5421-5431, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35866384

RESUMEN

To examine selective atrophy patterns and resting-state functional connectivity (FC) alterations in the amygdala at different stages of amyotrophic lateral sclerosis (ALS), and to explore any correlations between amygdala abnormalities and neuropsychiatric symptoms. We used the King's clinical staging system for ALS to divide 83 consecutive patients with ALS into comparable subgroups at different disease stages. We explored the pattern of selective amygdala subnucleus atrophy and amygdala-based whole-brain FC alteration in these patients and 94 healthy controls (HCs). Cognitive and emotional functions were also evaluated using a neuropsychological test battery. There were no significant differences between ALS patients at King's stage 1 and HCs for any amygdala subnucleus volumes. Compared with HCs, ALS patients at King's stage 2 had significantly lower left accessory basal nucleus and cortico-amygdaloid transition volumes. Furthermore, ALS patients at King's stage 3 demonstrated significant reductions in most amygdala subnucleus volumes and global amygdala volumes compared with HCs. Notably, amygdala-cuneus FC was increased in ALS patients at King's stage 3. Specific subnucleus volumes were significantly associated with Mini-Mental State Examination scores and Hamilton Anxiety Rating Scale scores in ALS patients. In conclusions, our study provides a comprehensive profile of amygdala abnormalities in ALS patients. The pattern of amygdala abnormalities in ALS patients differed greatly across King's clinical disease stages, and amygdala abnormalities are an important feature of patients with ALS at relatively advanced stages. Moreover, our findings suggest that amygdala volume may play an important role in anxiety and cognitive dysfunction in ALS patients.


Asunto(s)
Amígdala del Cerebelo , Esclerosis Amiotrófica Lateral , Humanos , Amígdala del Cerebelo/anomalías , Amígdala del Cerebelo/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/complicaciones , Atrofia , Pruebas Neuropsicológicas , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA