Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nano Lett ; 23(23): 11323-11329, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38019659

RESUMEN

The orbital angular momentum (OAM) generation as well as its associated orbital torque is currently a matter of great interest in spin-orbitronics and is receiving increasing attention. In particular, recent theoretical work predicts that the oxidized light metal Cu can serve as an efficient OAM generator through its surface orbital Rashba effect. Here, for the first time, the crucial current-induced magnetic-field-free in-plane magnetization reversal is experimentally demonstrated in CoFeB/CuOx bilayers without any heavy elements. We show that the critical current density can be comparable to that of strong spin-orbit coupling systems with heavy metals (Pt and Ta) and that the magnetization reversal mechanism is governed by coherent rotation in the grains through the second-harmonic and magneto-optical Kerr effect measurements. Our results indicate that light metal oxides can play an equally important role as heavy metals in magnetization reversal, broadening the choice of materials for engineering spintronic devices.

2.
Phys Chem Chem Phys ; 25(27): 18275-18283, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37395308

RESUMEN

Due to the presence of dissipationless edge states, the quantum anomalous Hall (QAH) insulator has garnered significant attention for both fundamental research and practical application. However, the majority of QAH insulators suffer from a low Chern number (C = 1), and the Chern number is basically unadjustable, which constrains their potential application in spintronic devices. Here, based on a tight-binding model and first-principles calculations, we propose that two-dimensional (2D) ferromagnetic monolayer NdN2 exhibits a high-Chern-number QAH effect with C = ±3, accompanied by a nontrivial band gap of 97.4 meV. More importantly, by manipulating the magnetization orientation in the xz plane, the Chern number of 2D NdN2 can be further tuned between C = ±3 and C = ±1. When the magnetization vector is confined to the xy plane, the monolayer NdN2 would exhibit either a Dirac half-semimetal or in-plane QAH phase. Moreover, the QAH effect with a higher Chern number C = 9 can be achieved by constructing a multilayer van der Waals heterostructure composed of monolayers NdN2 and BN with alternative stacking order. These findings provide a reliable platform for exploring the novel QAH effect and developing high-performance topological devices.

3.
Nat Mater ; 20(1): 76-83, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32807921

RESUMEN

In lithium-ion batteries (LIBs), many promising electrodes that are based on transition metal oxides exhibit anomalously high storage capacities beyond their theoretical values. Although this phenomenon has been widely reported, the underlying physicochemical mechanism in such materials remains elusive and is still a matter of debate. In this work, we use in situ magnetometry to demonstrate the existence of strong surface capacitance on metal nanoparticles, and to show that a large number of spin-polarized electrons can be stored in the already-reduced metallic nanoparticles (that are formed during discharge at low potentials in transition metal oxide LIBs), which is consistent with a space charge mechanism. Through quantification of the surface capacitance by the variation in magnetism, we further show that this charge capacity of the surface is the dominant source of the extra capacity in the Fe3O4/Li model system, and that it also exists in CoO, NiO, FeF2 and Fe2N systems. The space charge mechanism revealed by in situ magnetometry can therefore be generalized to a broad range of transition metal compounds for which a large electron density of states is accessible, and provides pivotal guidance for creating advanced energy storage systems.

4.
Phys Rev Lett ; 128(21): 217702, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687442

RESUMEN

Antiferromagnetic insulators have recently been proved to support spin current efficiently. Here, we report the dampinglike spin-orbit torque (SOT) in Pt/NiO/CoFeB has a strong temperature dependence and reverses the sign below certain temperatures, which is different from the slight variation with temperature in the Pt/CoFeB bilayer. The negative dampinglike SOT at low temperatures is proposed to be mediated by the magnetic interactions that tie with the "exchange bias" in Pt/NiO/CoFeB, in contrast to the thermal-magnon-mediated scenario at high temperatures. Our results highlight the promise to control the SOT through tuning the magnetic structure in multilayers.

5.
J Am Chem Soc ; 143(32): 12800-12808, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34369752

RESUMEN

In spite of the excellent electrochemical performance in lithium-ion batteries (LIBs), transition-metal compounds usually show inferior capacity and cyclability in sodium-ion batteries (SIBs), implying different reaction schemes between these two types of systems. Herein, coupling operando magnetometry with electrochemical measurement, we peformed a comprehensive investigation on the intrinsic relationship between the ion-embedding mechanisms and the electrochemical properties of the typical FeS2/Na (Li) cells. Operando magnetometry together with ex-situ transmission electron microscopy (TEM) measurement reveal that only part of FeS2 is involved in the conversion reaction process, while the unreactive parts form "inactive cores" that lead to the low capacity. Through quantification with Langevin fitting, we further show that the size of the iron grains produced by the conversion reaction are much smaller in SIBs than that in LIBs, which may lead to more serious pulverization, thereby resulting in worse cycle performance. The underlying reason for the above two above phenomena in SIBs is the sluggish kinetics caused by the larger Na-ion radius. Our work paves a new way for the investigation of novel SIB materials with high capacity and long durability.

6.
Nanotechnology ; 31(15): 155705, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31846952

RESUMEN

The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interest for spintronics. An iDMI constant larger than 3 mJ m-2 is expected to minimize the size of skyrmions and to optimize the domain-wall dynamics. In this study, we experimentally demonstrate a giant iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer to improve the tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant of up to 3.3 mJ m-2 is shown, which is promising for the scaling down of skyrmion electronics.

7.
J Chem Phys ; 152(14): 140901, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295356

RESUMEN

Interfacial behaviors and properties play critical roles in determining key practical parameters of electrochemical energy storage systems, such as lithium-ion and sodium-ion batteries. Soft x-ray spectroscopy features shallow penetration depth and demonstrates inherent surface sensitivity to characterize the interfacial behavior with elemental and chemical sensitivities. In this review, we present a brief survey of modern synchrotron-based soft x-ray spectroscopy of the interface in electrochemical energy storage systems. The technical focus includes core-level spectroscopy of conventional x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS). We show that while conventional techniques remain powerful for probing the chemical species on the surface, today's material research studies have triggered much more demanding chemical sensitivity that could only be offered by advanced techniques such as RIXS. Another direction in the field is the rapid development of various in situ/operando characterizations of complex electrochemical systems. Notably, the solid-state battery systems provide unique advantages for future studies of both the surface/interface and the bulk properties under operando conditions. We conclude with perspectives on the bright future of studying electrochemical systems through these advanced soft x-ray spectroscopic techniques.

8.
Phys Chem Chem Phys ; 19(46): 31267-31273, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29148556

RESUMEN

The CO2 adsorption and dynamic behaviors on single crystal anatase TiO2(101) surfaces were investigated by UHV-FTIRS and first-principles calculations. The IRRAS results at 90 K show that the ν3(OCO) asymmetric stretching vibration of adsorbed CO2 exhibits band splitting at rather low CO2 coverage in p-polarized IR spectra for the IR beam incident along the [101[combining macron]] direction. Co-adsorbed CO can prevent such band splitting. Ab initio molecular dynamics (AIMD) simulations revealed that the adsorbed CO2 at finite temperature does not keep a stationary adsorption state but keeps a certain swing motion: one end of the linear CO2 molecule binds to surface Ti5c sites and the other end swings within the (010) plane with a tilted angle distribution ranging from 10° to 60° relative to the [101[combining macron]] direction. By suggesting a statistical model, we confirmed that it is the swing motion that results in the band splitting phenomenon of CO2 vibration in IR spectra. The co-adsorbed CO decreases the swing angle distribution ranging from 10° to 45° through the intermolecular interaction between CO and CO2, leading to the disappearance of CO2 band splitting.

9.
Phys Chem Chem Phys ; 19(43): 29647-29652, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29085920

RESUMEN

Topological phases, especially topological crystalline insulators (TCIs), have been intensively explored and observed experimentally in three-dimensional (3D) materials. However, two-dimensional (2D) films are explored much less than 3D TCIs, and even 2D topological insulators. Based on ab initio calculations, here we investigate the electronic and topological properties of 2D PbTe(001) few-layer films. The monolayer and trilayer PbTe are both intrinsic 2D TCIs with a large band gap reaching 0.27 eV, indicating a high possibility for room-temperature observation of quantized conductance. The origin of the TCI phase can be attributed to the px,y-pz band inversion, which is determined by the competition of orbital hybridization and the quantum confinement effect. We also observe a semimetal-TCI-normal insulator transition under biaxial strains, whereas a uniaxial strain leads to Z2 nontrivial states. In particular, the TCI phase of a PbTe monolayer remains when epitaxially grown on a NaI semiconductor substrate. Our findings on the controllable quantum states with sizable band gaps present an ideal platform for realizing future topological quantum devices with ultralow dissipation.

10.
Phys Chem Chem Phys ; 18(26): 17660-5, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27306113

RESUMEN

The charge state of Au clusters deposited on rutile TiO2(110) single crystal surfaces was studied by UHV-FTIRS using CO as a probe. The as-deposited Au clusters on oxidized TiO2(110) surfaces are electrically neutral and are identified by the 2105-2112 cm(-1) vibrational frequency of adsorbed CO depending on Au coverage. Annealing Au/TiO2(110) in a moderate O2 atmosphere at 400 K blue shifts the CO vibrational frequency by only 2-3 cm(-1) both on bare TiO2(110) surfaces and on Au clusters. However, NO exposure blue shifts the CO vibrational frequency by 16-26 cm(-1) for CO adsorbed on Au atoms near the interface and by 3-4 cm(-1) for CO adsorbed on top of Au clusters. As the acceptors of the intense charge transfer from Au, the Oa atoms generated through (NO)2→ N2O + Oa reactions on the small fraction of the bare TiO2(110) surface reside around the Au/TiO2(110) interface perimeter, causing the neutral Au(0) to be cationic Au(δ+) states. This is a new approach to manipulate the charge state of Au clusters on oxide surfaces, which may be helpful in regulating the catalytic redox reactions on oxide supported metal systems.

11.
Phys Rev Lett ; 115(8): 087002, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26340201

RESUMEN

High quality HgCr2Se4 single crystals have been investigated by magnetization, electron transport, and Andreev reflection spectroscopy. In the ferromagnetic ground state, the saturation magnetic moment of each unit cell corresponds to an integer number of electron spins (3 µB/Cr3+), and the Hall effect measurements suggest n-type charge carriers. Spin polarizations as high as 97% were obtained from fits of the differential conductance spectra of HgCr2Se4/Pb junctions with the modified Blonder-Tinkham-Klapwijk theory. The temperature and bias-voltage dependencies of the subgap conductance are consistent with recent theoretical calculations based on spin active scatterings at a superconductor-half-metal interface. Our results suggest that n-HgCr2Se4 is a half-metal, in agreement with theoretical calculations that also predict undoped HgCr2Se4 is a magnetic Weyl semimetal.

12.
Phys Chem Chem Phys ; 17(37): 23994-4000, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26313610

RESUMEN

CO2 adsorption and interaction on rutile TiO2(110) surfaces was studied by UHV-FTIRS combined with theoretical simulations. With increasing CO2 exposure, CO2 adsorbs in succession at the oxygen vacancy (Vo) sites, on the five-coordinated Ti cation (Ti5c) sites and the bridging oxygen (Obr) sites at low temperature. The coupling has occurred between neighboring CO2 adsorbed on Ti5c sites from rather low CO2 coverage (∼0.5 ML), leading the ν3(OCO) asymmetric stretching vibrations to split into two absorption bands in IR spectra. Two kinds of coupled geometries of adjacent CO2 on Ti5c sites are determined by theoretical simulations. For the higher CO2 coverage (∼1.5 ML), the horizontal adsorption configuration along the [11[combining macron]0] azimuth of CO2 adsorbed on Obr sites is identified for the first time using polarization- and azimuth-resolved RAIRS in experiments. The significant deviation of CO2 from the top of Obr sites demonstrates the strong coupling between CO2 adsorbed on Obr and Ti5c sites.

13.
Nanotechnology ; 25(7): 075202, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24451997

RESUMEN

Nano-branched TiO2 arrays were fabricated on fluorine-doped tin oxide (FTO) glass by a facile two-step chemical synthesis process. Self-powered UV photodetectors based on photoelectrochemical cells (PECs) were assembled using these TiO2 nano-branched arrays as photoanodes. These visible-blind self-powered UV photodetectors exhibit high sensitivity and high-speed photoresponse. Compared with photodetectors based on bare TiO2 nanorod arrays, TiO2 nano-branched arrays show drastically improved photodetecting performance as photoanodes. The photosensitivity increases from 0.03 to 0.22 A W(-1) when optimized nano-branched TiO2 arrays are used, corresponding to an incident photon-to-current conversion efficiency higher than 77%. The UV photodetectors also exhibit excellent spectral selectivity and fast response (0.05 s decay time). The improved performance is attributed to a markedly enlarged TiO2/electrolyte contact area and good electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunk.

14.
Phys Chem Chem Phys ; 16(28): 14682-7, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24916484

RESUMEN

The adsorption and reaction of NO on both the oxidized and reduced single crystal rutile TiO2(110) surfaces were studied in a UHV-FTIRS system at low temperature. The monodentate adsorption configuration of the cis-(NO)2 dimer at bridge oxygen vacancy (Vo) sites was detected for the first time on reduced TiO2(110) surfaces. With the aid of (NO)2 dimer adsorption anisotropy, the bidentate configuration of the cis-(NO)2 dimer on fivefold coordinated Ti5c(4+) cation sites was clearly confirmed. The (NO)2 dimer converts to N2O on Ti5c(4+) cation sites at higher NO dosage on both oxidized and reduced surfaces, rather than at Vo sites. The (NO)2 → N2O conversion is independent of the presence of Vo on TiO2(110) surfaces. To explain the signs of absorption bands of the dimer monodentate configuration, the local optical constant at Vo sites was introduced.

15.
Phys Chem Chem Phys ; 16(43): 23711-5, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25272287

RESUMEN

Competitive adsorption of prototype molecules such as (12)CO, (13)CO and CO2 at the two typical fivefold coordinated Ti5c(4+) cation sites of reduced rutile TiO2(110) surfaces was studied in a newly designed UHV-FTIR system. The measured binding energies of (12)CO, (13)CO or CO2 adsorbed at two kinds of Ti5c(4+) sites are different. The molecular occupying probability at these sites depends on the binding energy of the adsorbed molecules; while, the molecular exchanging probability at these sites depends on their binding energy difference due to the presence of competitive adsorption. A simple thermodynamic equilibrium model was proposed to qualitatively interpret the adsorption and competitive adsorption mechanisms. These results will contribute to the elucidation of the (photo)catalytic process on TiO2(110) surfaces.

16.
Phys Chem Chem Phys ; 16(30): 15968-78, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24964160

RESUMEN

We performed first-principles calculations to study the adsorption characteristics of alkali, alkali-earth, group III, and 3d transition-metal (TM) adatoms on germanene. We find that the adsorption of alkali or alkali-earth adatoms on germanene has minimal effects on geometry of germanene. The significant charge transfer from alkali adatoms to germanene leads to metallization of germanene, whereas alkali-earth adatom adsorption, whose interaction is a mixture of ionic and covalent, results in semiconducting behavior with an energy gap of 17-29 meV. For group III adatoms, they also bind germanene with mixed covalent and ionic bonding character. Adsorption characteristics of the transition metals (TMs) are rather complicated, though all TM adsorptions on germanene exhibit strong covalent bonding with germanene. The main contributions to the strong bonding are from the hybridization between the TM 3d and Ge pz orbitals. Depending on the induced-TM type, the adsorbed systems can exhibit metallic, half-metallic, or semiconducting behavior. Also, the variation trends of the dipole moment and work function with the adsorption energy across the different adatoms are discussed. These findings may provide a potential avenue to design new germanene-based devices in nanoelectronics.

17.
ACS Nano ; 18(23): 15261-15269, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38820131

RESUMEN

Li-ion-based electric field control has been attracting significant attention, since it is able to penetrate deep into materials to exhibit diverse and controllable electrochemical processes, which offer more degrees of freedom to design multifunctional devices with low power consumption. As opposed to previous studies that mainly focused on single lithiation/delithiation mechanisms, we reveal three Li-ion modulation mechanisms in the same NiFe2O4 spinel ferrite by in situ magnetometry, i.e., intercalation, conversion, and space charge, which are respectively demonstrated in high, medium, and low voltage range. During the intercalation stage, the spinel structure is preserved, and a reversible modulation of magnetization arises from the charge transfer-induced variation of Fe valence states (Fe2+/Fe3+). Conversion-driven change in magnetization is the largest up to 89 emu g-1, due to the structural and magnetic phase transitions. Although both intercalation and conversion exhibit sluggish kinetics and long response times, the space charge manifests a faster switching speed and superior durability due to its interface electrostatic effect. These results not only provide a clear and comprehensive understanding on Li-based modulation mechanisms but also facilitate multifunctional and multiscenario applications, such as multistate memory, micromagnetic actuation, artificial synapse, and energy storage.

18.
Adv Sci (Weinh) ; 11(25): e2401657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647365

RESUMEN

The engineering of ferroic orders, which involves the evolution of atomic structure and local ferroic configuration in the development of next-generation electronic devices. Until now, diverse polarization structures and topological domains are obtained in ferroelectric thin films or heterostructures, and the polarization switching and subsequent domain nucleation are found to be more conducive to building energy-efficient and multifunctional polarization structures. In this work, a continuous and periodic strain in a flexible freestanding BaTiO3 membrane to achieve a zigzag morphology is introduced. The polar head/tail boundaries and vortex/anti-vortex domains are constructed by a compressive strain as low as ≈0.5%, which is extremely lower than that used in epitaxial rigid ferroelectrics. Overall, this study c efficient polarization structures, which is of both theoretical value and practical significance for the development of next-generation flexible multifunctional devices.

19.
Adv Mater ; 35(2): e2208275, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36268544

RESUMEN

Controllable manipulation of specific spin configurations of magnetic materials is the key to constructing functional spintronic devices. Here, it is demonstrated by integrating the merits of ferromagnetic, ferrimagnetic, and antiferromagnetic spin configurations into one synthetic antiferromagnetic (SAF) heterostructure by controlling both long-range oscillatory interlayer coupling and neighboring ferrimagnetic coupling. A controllable manipulation of four types of spin configurations of the Pt/[Co/Pt/Co]/Ru/CoTb SAF heterostructures composed of ferromagnetic Co/Pt/Co and ferrimagnetic CoTb layers is successfully achieved. In particular, the compensated magnetization, enhanced anomalous Hall resistance in the remanence state, wide-temperature spin-orbit torque switching of magnetization, and high immunity to the external magnetic field are simultaneously obtained in one of the SAF heterojunctions with macroscopic interlayer antiferromagnetic coupling. This design concept of engineering spin configurations may enable efficient spin manipulation for customized memory and logic applications.

20.
Nanomicro Lett ; 15(1): 95, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037951

RESUMEN

The sluggish kinetics of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) generate the large overpotential in water electrolysis and thus high-cost hydrogen production. Here, multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi3 intermetallic heterostructure is in situ constructed on NiFe foam (FeNiZn/FeNi3@NiFe) by dealloying protocol. Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone, FeNiZn/FeNi3@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER (η1000 = 367/245 mV) as well as the robust durability during the 400 h testing in alkaline solution. The as-built water electrolyzer with FeNiZn/FeNi3@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm-2 as well long working lives. Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi3 intermetallic generates the modulated electron structure state and optimized intermediate chemisorption, thus diminishing the energy barriers for hydrogen production in water splitting. With the merits of fine performances, scalable fabrication, and low cost, FeNiZn/FeNi3@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA