RESUMEN
Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.
Asunto(s)
Drosophila , Longevidad , Animales , Drosophila/genética , Longevidad/genética , Drosophila melanogaster/genética , Transcriptoma , Perfilación de la Expresión Génica , Extractos Vegetales/farmacologíaRESUMEN
BACKGROUND: The ricefield eel Monopterus albus undergoes a natural sex change from female to male during its life cycle, and previous studies have shown the potential mechanisms of this transition at the transcriptional and protein levels. However, the changes in protein levels have not been fully explored, especially in the intersexual stage. RESULTS: In the present study, the protein expression patterns in the gonadal tissues from five different periods, the ovary (OV), early intersexual stage gonad (IE), middle intersexual stage gonad (IM), late intersexual stage gonad (IL), and testis (TE), were determined by untargeted proteomics sequencing. A total of 5125 proteins and 394 differentially expressed proteins (DEPs) were detected in the gonadal tissues. Of the 394 DEPs, there were 136 between the OV and IE groups, 20 between the IM and IE groups, 179 between the IL and IM groups, and 59 between the TE and IL groups. Three candidate proteins, insulin-like growth factor 2 mRNA-binding protein 3 isoform X1 (Igf2bp3), triosephosphate isomerase (Tpi), and Cu-Zn superoxide dismutase isoform X1 [(Cu-Zn) Sod1], were validated by western blotting to verify the reliability of the data. Furthermore, metal metabolite-related proteins were enriched in the IL vs. IM groups and TE vs. IL groups, which had close relationships with sex change, including Cu2+-, Ca2+-, Zn2+- and Fe2+/Fe3+-related proteins. Analysis of the combined transcriptome data revealed consistent protein/mRNA expression trends for two metal metabolite-related proteins/genes [LOC109953912 and calcium Binding Protein 39 Like (cab39l)]. Notably, we detected significantly higher levels of Cu2+ during the sex change process, suggesting that Cu2+ is a male-related metal metabolite that may have an important function in male reproductive development. CONCLUSIONS: In summary, we analyzed the protein profiles of ricefield eel gonadal tissues in five sexual stages (OV, IE, IM, IL, and TE) and verified the plausibility of the data. After preforming the functional enrichment of metal metabolite-related DEPs, we detected the contents of the metal metabolites Zn2+, Cu2+, Ca2+, and Fe2+/Fe3+ at these five stages and screened for (Cu-Zn) Sod1 and Mmp-9 as possible key proteins in the sex reversal process.
Asunto(s)
Metales , Animales , Masculino , Femenino , Metales/metabolismo , Anguilas/metabolismo , Anguilas/genética , Proteómica , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Smegmamorpha/metabolismo , Smegmamorpha/genética , Organismos Hermafroditas/metabolismo , Organismos Hermafroditas/genética , Perfilación de la Expresión Génica , Testículo/metabolismoRESUMEN
BACKGROUND: Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS: The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION: Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.
Asunto(s)
Cyprinidae , Rayos Ultravioleta , Animales , Tibet , China , Cyprinidae/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS: In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20â, 24âand 28â. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28â was distinctly lower than that at 20â and 24â, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS: This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.
Asunto(s)
Perfilación de la Expresión Génica , Branquias , Animales , Branquias/metabolismo , Temperatura , Agua/metabolismo , Sodio/metabolismo , Adenosina Trifosfatasas/metabolismo , Peces/metabolismoRESUMEN
tRNA-derived small RNAs (tsRNAs) are derived from tRNA and include tRNA halves (tiRNAs) and tRNA fragments (tRFs). tsRNAs have been implicated in a variety of important biological functions, such as cell growth, transcriptional regulation, and apoptosis. Emerging evidence has shown that Ago1-guided and Ago2-guided tsRNAs are expressed at 3 and 30 days in Drosophila and that tRF biogenesis in fruit flies affects tRNA processing and tRNA methylation. However, a wide analysis of tsRNA patterns in different ages of Drosophila have not been reported via the small RNA sequencing method. In the present study, tsRNAs of young (7 days) and old (42 days) Drosophila were sequenced and their expression characteristics were analysed. Then, a specific tRF (named tRF-Trp-CCA-014) was determined and was found to be conserved in fruit flies, mice, and humans. The expression patterns of tRF-Trp-CCA-014 in different tissues and stages of fruit flies and mice, and mouse NIH/3T3 cells were detected. Furthermore, mouse embryonic fibroblast NIH/3T3 cells were used as a model to analyse the function and targets of tRF-Trp-CCA-014. The RNA-seq data of six groups (Mimics, Mimic NC, Inhibitors, Inhibitor NC, Aging (adriamycin), and Control (Normal)) in mouse NIH3T3 cells were analysed. The results showed that the number of tsRNAs at 42 days (417) was more than at 7 days (288); thus, it was enriched with age. tRFs-1 were the most enriched, followed by 5'-tRFs and 3'-tRFs. Twenty-one differentially expressed tsRNAs were identified between 7 days and 42 days. Then, the conserved tRF tRF-Trp-CCA-014 was identified and found to accumulate in aged fruit flies and aged mouse NIH3T3 cells. RNA-seq data showed that most differentially expressed genes were involved in the immune system, cancer: overview, and signal translation. Furthermore, tRF-Trp-CCA-014 was found to bind to the 3'UTR of H3C4 in a dual-luciferase reporter gene assay. tRF-Trp-CCA-014 and H3C4 were detected in the cytoplasm of aged NIH3T3 cells by RNA in situ hybridization. These results suggest that the H3C4 gene is the target of tRF-Trp-CCA-014. This study will advance the current understanding of tRF roles and their implication in Drosophila and mouse studies.
Asunto(s)
Proteínas de Drosophila , Drosophila , Humanos , Animales , Ratones , Anciano , Drosophila/genética , Drosophila/metabolismo , Células 3T3 NIH , Fibroblastos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Regulación de la Expresión Génica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Argonautas/genéticaRESUMEN
Forkhead box H1 (FoxH1) is a sexually dimorphic gene in Oreochromis niloticus, Oplegnathus fasciatus, and Acanthopagrus latus, indicating that it is essential for gonadal development. In the present study, the molecular characteristics and potential function of FoxH1 and the activation of the cyp19a1a promoter in vitro were evaluated in Monopterus albus. The levels of foxh1 in the ovaries were three times higher than those in the testes and were regulated by gonadotropins (Follicle-Stimulating Hormone and Human Chorionic Gonadotropin). FoxH1 colocalized with Cyp19a1a in the oocytes and granulosa cells of middle and late vitellogenic follicles. In addition, three FoxH1 binding sites were identified in the proximal promoter of cyp19a1a, namely, FH1 (-871/-860), FH2 (-535/-524), and FH3 (-218/-207). FoxH1 overexpression significantly attenuated the activity of the cyp19a1a promoter in CHO cells, and FH1/2 mutation increased promoter activity. Taken together, these results suggest that FoxH1 may act as an important regulator in the ovarian development of M. albus by repressing cyp19a1a promoter activity, which provides a foundation for the study of FoxH1 function in bony fish reproductive processes.
Asunto(s)
Aromatasa , Factores de Transcripción Forkhead , Smegmamorpha , Animales , Cricetinae , Femenino , Sitios de Unión , Cricetulus , Anguilas/genética , Ovario , Smegmamorpha/genética , Factores de Transcripción Forkhead/genética , Aromatasa/genética , Regiones Promotoras GenéticasRESUMEN
BACKGROUND: The expression and biological functions of circular RNAs (circRNAs) in reproductive organs have been extensively reported. However, it is still unclear whether circRNAs are involved in sex change. To this end, RNA sequencing (RNA-seq) was performed in gonads at 5 sexual stages (ovary, early intersexual stage gonad, middle intersexual stage gonad, late intersexual stage gonad, and testis) of ricefield eel, and the expression profiles and potential functions of circRNAs were studied. RESULTS: Seven hundred twenty-one circRNAs were identified, and the expression levels of 10 circRNAs were verified by quantitative real-time PCR (qRT-PCR) and found to be in accordance with the RNA-seq data, suggesting that the RNA-seq data were reliable. Then, the sequence length, category, sequence composition and the relationship between the parent genes of the circRNAs were explored. A total of 147 circRNAs were differentially expressed in the sex change process, and GO and KEGG analyses revealed that some differentially expressed (such as novel_circ_0000659, novel_circ_0004005 and novel_circ_0005865) circRNAs were closely involved in sex change. Furthermore, expression pattern analysis demonstrated that both circSnd1 and foxl2 were downregulated in the process of sex change, which was contrary to mal-miR-135b. Finally, dual-luciferase reporter assay and RNA immunoprecipitation showed that circSnd1 and foxl2 can combine with mal-miR-135b and mal-miR-135c. These data revealed that circSnd1 regulates foxl2 expression in the sex change of ricefield eel by acting as a sponge of mal-miR-135b/c. CONCLUSION: Our results are the first to demonstrate that circRNAs have potential effects on sex change in ricefield eel; and circSnd1 could regulate foxl2 expression in the sex change of ricefield eel by acting as a sponge of mal-miR-135b/c. These data will be useful for enhancing our understanding of sequential hermaphroditism and sex change in ricefield eel or other teleosts.
Asunto(s)
Trastornos del Desarrollo Sexual , MicroARNs , Smegmamorpha , Animales , Anguilas/genética , Femenino , Gónadas , Masculino , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Smegmamorpha/genéticaRESUMEN
BACKGROUND: An increasing number of long noncoding RNAs (lncRNAs) have been found to play important roles in sex differentiation and gonad development by regulating gene expression at the epigenetic, transcriptional and posttranscriptional levels. The ricefield eel, Monopterus albus, is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. However, the roles of lncRNA in the sex change is unclear. RESULTS: Herein, we performed RNA sequencing to analyse lncRNA expression patterns in five different stages of M. albus development to investigate the roles of lncRNAs in the sex change process. A total of 12,746 lncRNAs (1503 known lncRNAs and 11,243 new lncRNAs) and 2901 differentially expressed lncRNAs (DE-lncRNAs) were identified in the gonads. The target genes of the DE-lncRNAs included foxo1, foxm1, smad3, foxr1, camk4, ar and tgfb3, which were mainly enriched in signalling pathways related to gonadal development, such as the insulin signalling pathway, MAPK signalling pathway, and calcium signalling pathway. We selected 5 highly expressed DE-lncRNAs (LOC109952131, LOC109953466, LOC109954337, LOC109954360 and LOC109958454) for full length amplification and expression pattern verification. They were all expressed at higher levels in ovaries and intersex gonads than in testes, and exhibited specific time-dependent expression in ovarian tissue incubated with follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The results of quantitative real-time PCR (qRT-PCR) analysis and a dual-luciferase assay showed that znf207, as the gene targeted by LOC109958454, was expressed in multiple tissues and gonadal developmental stages of M. albus, and its expression was also inhibited by the hormones FSH and hCG. CONCLUSIONS: These results provide new insights into the role of lncRNAs in gonad development, especially regarding natural sex changes in fish, which will be useful for enhancing our understanding of sequential hermaphroditism and sex changes in the ricefield eel (M. albus) and other teleosts.
Asunto(s)
Trastornos del Desarrollo Sexual , ARN Largo no Codificante , Smegmamorpha , Animales , Anguilas/genética , Femenino , Hormona Folículo Estimulante/metabolismo , Gónadas , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Smegmamorpha/genéticaRESUMEN
In metabolism, molecular oxygen is a necessary substrate. Oxygen imbalances are linked to a variety of circumstances in the organism's homeostasis. Recently, the positive effects of hypoxia treatment in improving exercise ability and hypoxia tolerance have become a research focus. We explored the effects of intermittent hypoxia exposure (IHE, for one hour or three hours per day) on the hypoxia tolerance of largemouth bass in this study. The results showed that (1) IHE significantly reduced the LOEcrit (the critical O2 tension for loss of equilibrium) value of largemouth bass, indicating that its hypoxia tolerance was enhanced. (2) The level of oxidative stress in the liver decreased in the HH3 group (exposed to a hypoxic condition for 3 h per day) compared to HH1 group (exposed to a hypoxic condition for 1 h per day). (3) IHE reduced the content of lactic acid and enhanced the process of gluconeogenesis in the liver. (4) Importantly, lipid mobilization and fatty acid oxidation in the liver of largemouth bass were significantly enhanced during IHE. In short, the results of this study indicate that IHE can improve hypoxia tolerance by regulating the energy metabolism of largemouth bass.
Asunto(s)
Lubina , Adaptación Fisiológica , Animales , Lubina/fisiología , Hipoxia/metabolismo , Estrés Oxidativo , Oxígeno/metabolismoRESUMEN
Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.
Asunto(s)
Insulinas , MicroARNs , Proteínas Quinasas Activadas por AMP/metabolismo , Insulinas/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de TumorRESUMEN
Apoptosis plays a key role in the effective removal of excessive and defective germ cells, which is essential for sequential hermaphroditism and sex change in vertebrates. The ricefield eel, Monopterus albus is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. Previous studies have demonstrated that apoptosis is involved in sex change in M. albus. However, the apoptotic signaling pathway is unclear. In the current study, we explored the underlying mechanism of apoptosis during gonadal development and focused on the role of the mitochondrial apoptosis signaling pathway in sex change in M. albus. Flow cytometry was performed to detect apoptosis in gonads at five sexual stages and ovary tissues exposed to hydrogen peroxide (H2O2) in vitro. Then the expression patterns of key genes and proteins in the mitochondrial pathway, death receptor pathway and endoplasmic reticulum (ER) pathway were examined. The results showed that the apoptosis rate was significantly increased in the early intersexual stage and then decreased with the natural sex change from female to male. Quantitative real-time PCR revealed that bax, tnfr1, and calpain were mainly expressed in the five stages. ELISA demonstrated that the relative content of cytochrome-c (cyt-c) in the mitochondrial pathway was significantly higher than that of caspase8 and caspase12, with a peak in the early intersexual stage, while the levels of caspase8 and caspase12 peaked in the late intersexual stage. Interestingly, the Pearson's coefficient between cyt-c and the apoptosis rate was 0.705, which suggests that these factors are closely related during the gonadal development of M. albus. Furthermore, the cyt-c signal was found to be increased in the intersexual stage by immunohistochemistry. After incubation with H2O2, the mRNA expression of mitochondrial pathway molecules such as bax, apaf-1, and caspase3 increased in ovary tissues. In conclusion, the present results suggest that the mitochondrial apoptotic pathway may play a more important role than the other apoptotic pathways in sex change in M. albus.
Asunto(s)
Trastornos del Desarrollo Sexual , Anguilas , Animales , Apoptosis , Calpaína/metabolismo , Citocromos c/metabolismo , Trastornos del Desarrollo Sexual/metabolismo , Anguilas/genética , Anguilas/metabolismo , Femenino , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Masculino , Oocitos/metabolismo , Ovario/metabolismo , ARN Mensajero/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
The lack of detailed information on nutritional requirement results in limited feeding in Siberian sturgeon. In this study, resveratrol, a versatile natural extract, was supplemented in the daily diet, and the digestive ability and microbiome were evaluated in the duodena and valvular intestines of Siberian sturgeon. The results showed that resveratrol increased the activity of pepsin, α-amylase, and lipase, which was positively associated with an increase in the digestive ability, but it did not influence the final body weight. Resveratrol improved the digestive ability probably by distinctly enhancing intestinal villus height. Microbiome analysis revealed that resveratrol changed the abundance and composition of the microbial community in the intestine, principally in the duodenum. Random forests analysis found that resveratrol significantly downregulated the abundance of potential pathogens (Citrobacter freundii, Vibrio rumoiensis, and Brucella melitensis), suggesting that resveratrol may also improve intestinal health. In summary, our study revealed that resveratrol improved digestive ability and intestinal health, which can contribute to the development of functional feed in Siberian sturgeon.
Asunto(s)
Alimentación Animal , Pepsina A , Alimentación Animal/análisis , Animales , Dieta , Peces , Intestinos/química , Lipasa , Resveratrol/farmacología , alfa-AmilasasRESUMEN
Bmpr2 plays a central role in the regulation of reproductive development in mammals, but its role during ovarian development in fish is still unclear. To ascertain the function of bmpr2 in ovarian development in the ricefield eel, we isolated and characterized the bmpr2 cDNA sequence; the localization of Bmpr2 protein was determined by immunohistochemical staining; and the expression patterns of bmpr2 in ovarian tissue incubated with FSH and hCG in vitro were analyzed. The full-length bmpr2 cDNA was 3311 bp, with 1061 amino acids encoded. Compared to other tissues, bmpr2 was abundantly expressed in the ovary and highly expressed in the early yolk accumulation (EV) stages of the ovary. In addition, a positive signal for Bmpr2 was detected in the cytoplasm of oocytes in primary growth (PG) and EV stages. In vitro, the expression level of gdf9, the ligand of bmpr2, in the 10 ng/mL FSH treatment group was significantly higher after incubation for 4 h than after incubation for different durations. However, bmpr2 expression in the 10 ng/mL FSH treatment group at 2 h, 4 h and 10 h was significantly lower. Importantly, the expression level of bmpr2 and gdf9 in the 100 IU/mL hCG group had similar changes that were significantly decreased at 4 h and 10 h. In summary, Bmpr2 might play a pivotal role in ovarian growth in the ricefield eel, and these results provide a better understanding of the function of bmpr2 in ovarian development and the basic data for further exploration of the regulatory mechanism of gdf9 in oocyte development.
Asunto(s)
Anguilas , Gonadotropinas , Animales , Femenino , Anguilas/genética , Anguilas/metabolismo , Gonadotropinas/metabolismo , Ovario/metabolismo , Oocitos , Factor de Crecimiento Transformador beta/metabolismo , MamíferosRESUMEN
Siva1, which induces extensive apoptosis, has been well characterized. To elucidate the molecular function of Siva1 in ricefield eel, molecular characterization and phylogenetic analysis were performed, and the mRNA expression in the ovary at different developmental stages and ovary tissues exposed to H2O2 and Z-VAD-FMK in vitro were also evaluated. The results indicated that ricefield eel Siva1 was highly conserved and contains three conserved motifs, despite 83 amino acid differences upstream of the initiation codon. Phylogenetic analysis demonstrated that ricefield eel Siva1 clusters together with the Siva1 protein of the other fish, with high sequence homology with that of Lates calcarifer. Quantitative real-time polymerase chain reaction analysis showed high siva1 expression levels in the ovary and low expression levels in the liver. The higher mRNA levels of siva1 were detected in the IE and IM, and the lower siva1 mRNA levels were found in the OM, IL, and TE during gonadal development. Additionally, siva1 expression levels in the ovarian tissues were significantly increased at 1 h post incubation (hpi) with H2O2 and then significantly decreased at 2 hpi; however, siva1 expression was upregulated significantly at 4 and 8 hpi, similar to the patterns observed with caspase3, which was used as a molecular marker of apoptosis. Moreover, the siva1 mRNAs were elevated significantly than that in control groups at 1 hpi, but the expression of siva1 was down-regulated dramatically at 2, 4, and 8 hpi, which were similar with that of caspase3 expression profiles after Z-VAD-FMK incubation. What's more, Pearson's correlation coefficients showed strongly positive relationships between siva1 and caspase3. These findings suggest that Siva1 plays an important apoptosis role in gonadal development of ricefield eel.
Asunto(s)
Trastornos del Desarrollo Sexual , Proteínas de Peces/genética , Smegmamorpha , Animales , Apoptosis , Anguilas/genética , Femenino , Peces , Peróxido de Hidrógeno , Filogenia , ARN Mensajero/genética , Smegmamorpha/fisiologíaRESUMEN
Echinococcosis are considered to be potentially lethal zoonotic diseases that cause serious damage to hosts. The metacestode of Echinococcus multilocularis and E. granulosus can result in causing the alveolar and cystic echinococcoses, respectively. Recent studies have shown that non-coding RNAs are widely expressed in Echinococcus spp. and hosts. In this review, the two main types of non-coding RNAs-long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)-and the wide-scale involvement of these molecules in these parasites and their hosts were discussed. The expression pattern of miRNAs in Echinococcus spp. is species- and developmental stage-specific. Furthermore, common miRNAs were detected in three Echinococcus spp. and their intermediate hosts. Here, we primarily focus on recent insights from transcriptome studies, the expression patterns of miRNAs and lncRNAs, and miRNA-related databases and techniques that are used to investigate miRNAs in Echinococcus and echinococcosis. This review provides new avenues for screening therapeutic and diagnostic markers.
Asunto(s)
Equinococosis/parasitología , Echinococcus granulosus/genética , Echinococcus multilocularis/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Animales , Humanos , Transcriptoma/genéticaRESUMEN
Smad2, a receptor-activated Smad, plays a critical role in regulating gametogenesis. In this study, a smad2 homologue was identified and sequenced from ricefield eel ovary cDNA, and its mRNA and protein expression levels were analysed during oocyte development. The cDNA sequence of ricefield eel smad2 consisted of 1863 bp encoding a 467-amino acid protein that had high sequence homology with Smad proteins in other teleosts, especially in Poeciliopsis prolifica. The results of real-time quantitative PCR (RT-qPCR) analysis revealed that smad2 is expressed in the ovary during gonad development, increased continuously until the early vitellogenic stage in the ovaries, and then decreased with ovary maturation. Smad2 protein immunoreactivity was localized in the cytoplasm of follicular cells, oogonia, and primary growth stage oocytes. In vitro experiments revealed that follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG) promoted smad2 expression in ovary tissue in a time- and dose-dependent manner, respectively. In summary, Smad2 plays a potentially vital role in ricefield eel ovary development.
Asunto(s)
Gonadotropina Coriónica/farmacología , Anguilas/genética , Hormona Folículo Estimulante/farmacología , Ovario/efectos de los fármacos , Proteína Smad2/genética , Animales , ADN Complementario/genética , Trastornos del Desarrollo Sexual , Anguilas/metabolismo , Femenino , Ovario/metabolismo , ARN Mensajero/metabolismo , Proteína Smad2/metabolismoRESUMEN
This study evaluated the effects of temperature on the activities of antioxidant enzymes and hormone levels in Schizothorax prenanti. Schizothorax prenanti were acutely suffered from increasing temperature at a rate of 1⯰Câ¯h-1. The temperature started from 11⯰C and the critical thermal maximum (CTMax) was measured to evaluated thermal tolerance of Schizothorax prenanti. Antioxidant parameters including superoxide dismutase (SOD), catalase (CAT), Na+/K+-ATPase and malondialdehyde (MDA) in gills, liver and muscle were measured at five temperature groups (11⯰C, 16⯰C, 21⯰C, 26⯰C and 31⯰C). The plasma hormone including acetylcholine (ACh) and cortisol were also measured at five temperature groups. Our results showed that the CTMax of Schizothorax prenanti under acute heat stress was 31⯰C.The activities of SOD and CAT in liver and muscle at 11⯰C, 16⯰C, 26⯰C and 31⯰C groups were significantly higher than 21⯰C group, as well as Na+/K+-ATPase in gills and MDA concentrations in gills and liver. However, plasma ACh and cortisol levels were significantly increased with increasing temperature. The results indicate that oxidative stress parameters could respons to increase of temperatur, altogether reflect that Schizothorax prenanti has higher susceptibility of temperature. Thus, the effect of long-term high temperature on Schizothorax prenanti should be studied further.
Asunto(s)
Antioxidantes/metabolismo , Cyprinidae/metabolismo , Proteínas de Peces/metabolismo , Respuesta al Choque Térmico , Acetilcolina/sangre , Adaptación Fisiológica , Animales , Catalasa/metabolismo , Calor , Hidrocortisona/sangre , Malondialdehído/metabolismo , Estrés Oxidativo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
The Tibetan Plateau underwent dramatic geological and climatic changes, which had important implications for genetic divergence and population dynamics of freshwater fish populations. Fluctuations of the ecogeographical environment and major hydrographic formations might have promoted the formation of new subspecies or species. In order to understand the impact of plateau uplift on freshwater fish evolutionary history, we estimated the genetic diversity and population structure in two subspecies of Schizopygopsis chengi (S. c. chengi and S. c. baoxingensis) in upper Yangtze River in Tibetan Plateau area using mitochondrial DNA control region and eight microsatellite markers, which suggested that there was a close genetic relationship. S. chengi showed some significant genetic structure that did not correlate with geographic distance. Bayesian assignment tests indicated that S. chengi samples in the study could be divided into four populations: upstream population, midstream population, tributary population and S. c. baoxingensis population. S. c. chengi and S. c. baoxingensis showed significant genetic divergence. However, phylogenetic analysis, population structure analysis and historical gene flow estimation suggested that there was close genetic relationship between S. c. baoxingensis and the Dawei population which belongs to populations of S. c. chengi. The time that Dawei population suffered from a bottleneck and S. c. baoxingensis underwent population expansion was congruent with the last glacial period on the Tibetan Plateau. The results confirmed the hypothesis that the Dawei River and Baoxing River were once connected, and the Dawei and Baoxing populations originated from a single population, but were isolated into separate populations because of crustal movements and the Baoxing population evolved as S. c. baoxingensis.
Asunto(s)
ADN Mitocondrial , Peces/clasificación , Peces/genética , Genética de Población , Repeticiones de Microsatélite , Animales , Análisis por Conglomerados , Flujo Génico , Sitios Genéticos , Variación Genética , Geografía , Haplotipos , FilogeniaRESUMEN
Through the RT-PCR and rapid amplification of cDNA ends, two complementary deoxyribonucleic acid (cDNA) clones encoding heat-shock cognate 70 (HSC70, designated Sp-HSC70) and inducible heat-shock protein 70 (HSP70, designated Sp-HSP70) were isolated from the liver of Prenant's schizothoracin (Schizothorax prenanti). The cDNAs were 2344- and 2292-bp in length and contained 1950- and 1932-bp open reading frames, encoded proteins of 649 and 643 amino acids, respectively. Amino acid sequence analysis indicated that both Sp-HSC70 and Sp-HSP70 contained three signature sequences of HSP70 family, two partial overlapping bipartite nuclear localization signal sequences (an ATP-binding site motif, a bipartite nuclear targeting signal), and a cytoplasmic characteristic motif EEVD. Homology analysis revealed that Sp-HSC70 and Sp-HSP70 shared 77.5% identity and Sp-HSC70 shared more than 81.1% identity with the known HSC70s of other vertebrates, while Sp-HSP70 shared more than 77.5 % identity with the known HSP70s of other vertebrates. Fluorescent real-time quantitative RT-PCR showed that Sp-HSC70 and Sp-HSP70 mRNAs were found in all tested tissues, including blood, brain, heart, liver, spleen, head kidney, white muscle, skin, gonad, hypophysis, red muscle, and gill. The Sp-HSC70 and Sp-HSP70 mRNA expression level in blood and head kidney displayed a significant increase in vibrio-challenged group with the bacterium Aeromonas hydrophila at 24 h post-infection compared to a control group. Temporally, there was a clear time-dependent expression pattern of Sp-HSC70 or Sp-HSP70 gene after bacterial challenge, and the expression of Sp-HSC70 and Sp-HSP70 mRNAs reached a maximum level at 12 and 6 h post-challenge, respectively. Both returned to control level after 7 × 24 h. The results suggest that Sp-HSC70 and Sp-HSP70 genes may play important roles in mediating the immune responses of A. hydrophila-related diseases in the Prenant's schizothoracin.
Asunto(s)
Cyprinidae/genética , Proteínas del Choque Térmico HSC70/genética , Proteínas HSP70 de Choque Térmico/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cyprinidae/metabolismo , Cartilla de ADN/genética , ADN Complementario/genética , Fluorescencia , Perfilación de la Expresión Génica/veterinaria , Proteínas del Choque Térmico HSC70/metabolismo , Hígado/metabolismo , Datos de Secuencia Molecular , Técnica del ADN Polimorfo Amplificado Aleatorio , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN/veterinariaRESUMEN
BACKGROUND: Neurodegenerative disease is a collective term for a category of diseases that are caused by neuronal dysfunction, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Circular RNAs (circRNAs) are a class of non-coding RNAs without the 3' cap and 5' poly(A) and are linked by covalent bonds. CircRNAs are highly expressed in brain neurons and can regulate the pathological process of neurodegenerative diseases by affecting the levels of various deposition proteins. AIMS: This review is aiming to suggest that the majority of circRNAs influence neurodegenerative pathologies mainly by affecting the abnormal deposition of proteins in neurodegenerative diseases. METHODS: We systematically summarized the pathological features of neurodegenerative diseases and the regulatory mechanisms of circRNAs in various types of neurodegenerative diseases. RESULTS: Neurodegenerative disease main features include intercellular ubiquitin-proteasome system abnormalities, changes in cytoskeletal proteins, and the continuous deposition of insoluble protein fragments and inclusion bodies in the cytoplasm or nucleus, resulting in impairment of the normal physiological processes of the neuronal system. CircRNAs have multiple mechanisms, such as acting as microRNA sponges, binding to proteins, and regulating transcription. CircRNAs, which are highly stable molecules, are expected to be potential biomarkers for the pathological detection of neurodegenerative diseases such as AD and PD. CONCLUSIONS: In this review, we describe the regulatory roles and mechanisms of circRNAs in neurodegenerative diseases and aim to employ circRNAs as biomarkers for the diagnosis and treatment of neurodegenerative diseases.