Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 529-551, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200865

RESUMEN

RNA C-to-U editing in organelles is essential for plant growth and development; however, the underlying mechanism is not fully understood. Here, we report that pentatricopeptide repeat (PPR)-E subclass proteins carry out RNA C-to-U editing by recruiting the trans deaminase PPR motifs, coiled-coil, and DYW domain-containing protein 1 (PCW1) in maize (Zea mays) mitochondria. Loss-of-function of bZIP and coiled-coil domain-containing PPR 1 (bCCP1) or PCW1 arrests seed development in maize. bCCP1 encodes a bZIP and coiled-coil domain-containing PPR protein, and PCW1 encodes an atypical PPR-DYW protein. bCCP1 is required for editing at 66 sites in mitochondria and PCW1 is required for editing at 102 sites, including the 66 sites that require bCCP1. The PCW1-mediated editing sites are exclusively associated with PPR-E proteins. bCCP1 interacts with PCW1 and the PPR-E protein Empty pericarp7 (EMP7). Two multiple organellar RNA editing factor (MORF) proteins, ZmMORF1 and ZmMORF8, interact with PCW1, EMP7, and bCCP1. ZmMORF8 enhanced the EMP7-PCW1 interaction in a yeast three-hybrid assay. C-to-U editing at the ccmFN-1553 site in maize required EMP7, bCCP1, and PCW1. These results suggest that PPR-E proteins function in RNA editing by recruiting the trans deaminase PCW1 and bCCP1, and MORF1/8 assist this recruitment through protein-protein interactions.


Asunto(s)
Edición de ARN , Zea mays , Zea mays/metabolismo , Edición de ARN/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Orgánulos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN
2.
Plant Physiol ; 195(1): 430-445, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198212

RESUMEN

The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and 2 other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas , Plastidios , Plantones , Semillas , Zea mays , Zea mays/genética , Zea mays/embriología , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación/genética , Plastidios/genética , Plastidios/metabolismo , Fenotipo , Empalme del ARN/genética , Intrones/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(39): e2210978119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122211

RESUMEN

Identifying the PPR-E+-NUWA-DYW2 editosome improves our understanding of the C-to-U RNA editing in plant organelles. However, the mechanism of RNA editing remains to be elucidated. Here, we report that GLUTAMINE-RICH PROTEIN23 (GRP23), a previously identified nuclear transcription regulator, plays an essential role in mitochondrial RNA editing through interacting with MORF (multiple organellar RNA-editing factor) proteins and atypical DYW-type pentatricopeptide repeat (PPR) proteins. GRP23 is targeted to mitochondria, plastids, and nuclei. Analysis of the grp23 mutants rescued by embryo-specific complementation shows decreased editing efficiency at 352 sites in mitochondria and 6 sites in plastids, with a predominant specificity for sites edited by the PPR-E and PPR-DYW proteins. GRP23 interacts with atypical PPR-DYW proteins (MEF8, MEF8S, DYW2, and DYW4) and MORF proteins (MORF1 and MORF8), whereas the four PPR-DYWs interact with the two MORFs. These interactions may increase the stability of the GRP23-MORF-atypical PPR-DYW complex. Furthermore, analysis of mef8N△64aamef8s double mutants shows that MEF8/MEF8S are required for the editing of the PPR-E protein-targeted sites in mitochondria. GRP23 could enhance the interaction between PPR-E and MEF8/MEF8S and form a homodimer or heterodimer with NUWA. Genetic complementation analysis shows that the C-terminal domains of GRP23 and NUWA possess a similar function, probably in the interaction with the MORFs. NUWA also interacts with atypical PPR-DYWs in yeast. Both GRP23 and NUWA interact with the atypical PPR-DYWs, suggesting that the PPR-E proteins recruit MEF8/MEF8S, whereas the PPR-E+ proteins specifically recruit DYW2 as the trans deaminase, and then GRP23, NUWA, and MORFs facilitate and/or stabilize the E or E+-type editosome formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Edición de ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocondrias/metabolismo , Edición de ARN/genética , ARN Mitocondrial/metabolismo , Factores de Transcripción/metabolismo
4.
Cancer Cell Int ; 24(1): 242, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992667

RESUMEN

As one of the significant challenges to human health, cancer has long been a focal point in medical treatment. With ongoing advancements in the field of medicine, numerous methodologies for cancer therapy have emerged, among which oncolytic virus therapy has gained considerable attention. However, oncolytic viruses still exhibit limitations. Combining them with various therapies can further enhance the efficacy of cancer treatment, offering renewed hope for patients. In recent research, scientists have recognized the promising prospect of amalgamating oncolytic virus therapy with diverse treatments, potentially surmounting the restrictions of singular approaches. The central concept of this combined therapy revolves around leveraging oncolytic virus to incite localized tumor inflammation, augmenting the immune response for immunotherapeutic efficacy. Through this approach, the patient's immune system can better recognize and eliminate cancer cells, simultaneously reducing tumor evasion mechanisms against the immune system. This review delves deeply into the latest research progress concerning the integration of oncolytic virus with diverse treatments and its role in various types of cancer therapy. We aim to analyze the mechanisms, advantages, potential challenges, and future research directions of this combination therapy. By extensively exploring this field, we aim to instill renewed hope in the fight against cancer.

5.
J Environ Manage ; 336: 117561, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36868154

RESUMEN

The objective of this study was to investigate the microbial mechanisms for the improvement of composting efficiency after Bacillus subtilis inoculation with soluble phosphorus function in the spent mushroom substrate (SMS) aerobic composting. The methods in this study, including redundant analysis (RDA), co-occurrence network analyze and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt 2) were carried out studying the dynamic changes of phosphorus (P) components, microbial interactions and metabolic characteristics in the SMS aerobic composting inoculated with phosphorus-solubilizing B. subtilis (PSB). An increase in germination index (GI) (up to 88.4%), total nitrogen (TN) (16.6 g kg-1), available P content (0.34 g kg-1) and total P (TP) content (3.20 g kg-1) and a decrease in total organic carbon (TOC), C/N and electrical conductivity (EC) in final composting stage indicated B. subtilis inoculation could further improve maturity quality of the composting product compared with CK. Other results also demonstrated that PSB inoculation increased the stability of compost, humification degree and bacterial diversity, contributing to P fractions transformation in the composting process. Co-occurrence analysis suggested that PSB strengthened microbial interactions. Metabolic function of bacterial community analysis showed pathways such as carbohydrate metabolism, and amino acid metabolism in the composting were increased by effects of PSB inoculation. In summary, this study reveals a useful basis for better regulating the P nutrient level of the SMS composting and reducing environmental risks by inoculating B. subtilis with P solubilizing function.


Asunto(s)
Agaricales , Compostaje , Fosfatos/química , Bacillus subtilis , Filogenia , Suelo/química , Fósforo , Nitrógeno , Estiércol
6.
J Integr Plant Biol ; 65(11): 2456-2468, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37594235

RESUMEN

RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA-protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.


Asunto(s)
Proteínas de Plantas , Zea mays , Humanos , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Intrones/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Mitocondrias/metabolismo , ARN/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
7.
Cladistics ; 38(4): 403-428, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35349192

RESUMEN

More than 95% of phytophagous true bug (Hemiptera: Heteroptera) species belong to four superfamilies: Miroidea (Cimicomorpha), Pentatomoidea, Coreoidea, and Lygaeoidea (all Pentatomomorpha). These iconic groups of highly diverse, overwhelmingly phytophagous insects include several economically prominent agricultural and silvicultural pest species, though their evolutionary history has not yet been well resolved. In particular, superfamily- and family-level phylogenetic relationships of these four lineages have remained controversial, and the divergence times of some crucial nodes for phytophagous true bugs have hitherto been little known, which hampers a better understanding of the evolutionary processes and patterns of phytophagous insects. In the present study, we used 150 species and concatenated nuclear and mitochondrial protein-coding genes and rRNA genes to infer the phylogenetic relationships within the Terheteroptera (Cimicomorpha + Pentatomomorpha) and estimated their divergence times. Our results support the monophyly of Cimicomorpha, Pentatomomorpha, Miroidea, Pentatomoidea, Pyrrhocoroidea, Coreoidea, and Lygaeoidea. The phylogenetic relationships across phytophagous lineages are largely congruent at deep nodes across the analyses based on different datasets and tree-reconstructing methods with just a few exceptions. Estimated divergence times and ancestral state reconstructions for feeding habit indicate that phytophagous true bugs explosively radiated in the Early Cretaceous-shortly after the angiosperm radiation-with the subsequent diversification of the most speciose clades (Mirinae, Pentatomidae, Coreinae, and Rhyparochromidae) in the Late Cretaceous.


Asunto(s)
Heterópteros , Magnoliopsida , Animales , Evolución Biológica , Heterópteros/genética , Filogenia
8.
PLoS Genet ; 15(8): e1008305, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31374076

RESUMEN

C-to-U editing is an important event in post-transcriptional RNA processing, which converts a specific cytidine (C)-to-uridine (U) in transcripts of mitochondria and plastids. Typically, the pentatricopeptide repeat (PPR) protein, which specifies the target C residue by binding to its upstream sequence, is involved in the editing of one or a few sites. Here we report a novel PPR-DYW protein EMP21 that is associated with editing of 81 sites in maize. EMP21 is localized in mitochondria and loss of the EMP21 function severely inhibits the embryogenesis and endosperm development in maize. From a scan of 35 mitochondrial transcripts produced by the Emp21 loss-of-function mutant, the C-to-U editing was found to be abolished at five sites (nad7-77, atp1-1292, atp8-437, nad3-275 and rps4-870), while reduced at 76 sites in 21 transcripts. In most cases, the failure to editing resulted in the translation of an incorrect residue. In consequence, the mutant became deficient with respect to the assembly and activity of mitochondrial complexes I and V. As six of the decreased editing sites in emp21 overlap with the affected editing sites in emp5-1, and the editing efficiency at rpl16-458 showed a substantial reduction in the emp21-1 emp5-4 double mutant compared with the emp21-1 and emp5-4 single mutants, we explored their interaction. A yeast two hybrid assay suggested that EMP21 does not interact with EMP5, but both EMP21 and EMP5 interact with ZmMORF8. Together, these results indicate that EMP21 is a novel PPR-DYW protein required for the editing of ~17% of mitochondrial target Cs, and the editing process may involve an interaction between EMP21 and ZmMORF8 (and probably other proteins).


Asunto(s)
Proteínas de Plantas/metabolismo , Edición de ARN , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Zea mays/fisiología , Complejo I de Transporte de Electrón/metabolismo , Desarrollo Embrionario/genética , Endospermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , Proteínas de Unión al ARN/genética
9.
Plant J ; 103(5): 1767-1782, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559332

RESUMEN

The self-splicing of group II introns during RNA processing depends on their catalytic structure and is influenced by numerous factors that promote the formation of that structure through direct binding. Here we report that C-to-U editing at a specific position in two nad7 introns is essential to splicing, which also implies that the catalytic activity of non-functional group II introns could be restored by editing. We characterized a maize (Zea mays) mutant, dek46, with a defective kernel phenotype; Dek46 encodes a pentatricopeptide repeat DYW protein exclusively localized in mitochondria. Analyses of the coding regions of mitochondrial transcripts did not uncover differences in RNA editing between dek46 mutant and wild-type maize, but showed that splicing of nad7 introns 3 and 4 is severely reduced in the mutant. Furthermore, editing at nucleotide 22 of domain 5 (D5-C22) of both introns is abolished in dek46. We constructed chimeric introns by swapping D5 of P.li.LSUI2 with D5 of nad7 intron 3. In vitro splicing assays indicated that the chimeric intron containing D5-U22 can be self-spliced, but the one containing D5-C22 cannot. These results indicate that DEK46 functions in the C-to-U editing of D5-C22 of both introns, and the U base at this position is critical to intron splicing.


Asunto(s)
Intrones , Mitocondrias/metabolismo , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Empalme del ARN , ARN de Planta/genética , ARN de Planta/metabolismo , Semillas/metabolismo , Zea mays/metabolismo
10.
J Exp Bot ; 72(13): 4809-4821, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33929512

RESUMEN

Pentatricopeptide repeat (PPR) proteins are involved in the C-to-U RNA editing of organellar transcripts. The maize genome contains over 600 PPR proteins and few have been found to function in the C-to-U RNA editing in chloroplasts. Here, we report the function of ZmPPR26 in the C-to-U RNA editing and chloroplast biogenesis in maize. ZmPPR26 encodes a DYW-type PPR protein targeted to chloroplasts. The zmppr26 mutant exhibits albino seedling-lethal phenotype. Loss of function of ZmPPR26 abolishes the editing at atpA-1148 site, and decreases the editing at ndhF-62, rpl20-308, rpl2-2, rpoC2-2774, petB-668, rps8-182, and ndhA-50 sites. Overexpression of ZmPPR26 in zmppr26 restores the editing efficiency and rescues the albino seedling-lethal phenotype. Abolished editing at atpA-1148 causes a Leu to Ser change at AtpA-383 that leads to a reduction in the abundance of chloroplast ATP synthase in zmppr26. The accumulation of photosynthetic complexes are also markedly reduced in zmppr26, providing an explanation for the albino seedling-lethal phenotype. These results indicate that ZmPPR26 is required for the editing at atpA-1148 and is important for editing at the other seven sites in maize chloroplasts. The editing at atpA-1148 is critical for AtpA function, assembly of ATP synthase complex, and chloroplast biogenesis in maize.


Asunto(s)
Edición de ARN , Zea mays , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
RNA Biol ; 18(4): 499-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32936708

RESUMEN

Pentatricopeptide repeat (PPR) proteins play an important role in post-transcriptional regulation of mitochondrial gene expression. Functions of many PPR proteins and their roles in plant growth and development remain unknown. Through characterization of an empty pericarp32 (emp32) mutant, we identified the function of Emp32 in mitochondrial intron splicing and seed development in maize. The loss-of-function mutant emp32 shows embryo lethality with severely arrested embryo and endosperm development, and over-expression of Emp32 rescues the embryo-lethality. EMP32 is a P-type PPR protein targeted to mitochondria. Loss of function in Emp32 dramatically decreases the splicing efficiency of nad7 intron 2, while complementation of Emp32 restores the splicing efficiency. Although nad7 intron 2 is partially spliced in the wild type, over-expression of Emp32 does not increase the splicing efficiency. The splicing deficiency of nad7 intron 2 blocks the assembly of mitochondrial complex I and dramatically reduces its activity, which may explain the embryo-lethality in emp32. In addition to the one copy of nad7 in the maize mitochondrial genome, we identified one to six copies of nad7 in the nuclear genomes in different maize inbred lines. These copies appear not to be expressed. Together, our results revealed that the P-type PPR protein EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize.


Asunto(s)
NADH Deshidrogenasa/genética , Proteínas de Plantas/fisiología , Empalme del ARN/genética , Zea mays , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrollo
12.
Neoplasma ; 68(4): 823-831, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34097427

RESUMEN

Due to tumor heterogeneity, the consistency of programmed cell death-ligand 1 (PD-L1) expression between circulating tumor cells (CTCs) and tissue is controversial. This study aimed to establish a method for detecting CTC PD-L1 expression and exploring the impact of the same on the prognosis of lung cancer. In 32 patients with non-small cell lung cancer, lung cancer cells in the blood were enriched using CD326 immunomagnetic beads. Goat anti-mouse polyclonal CD326 antibody stained the epithelial lung cancer cells and anti-PD-L1 antibody was used to detect the expression of CTC PD-L1. The DAKO Link 48 automatic staining device detected the expression in lung cancer tissue. The consistency of PD-L1 expression was analyzed in lung cancer tissue and CTCs. The effect of plasma interferon gamma, tumor necrosis factor alpha, and interleukin-2 on PD-L1 expression and prognosis was analyzed. The number of CTCs detected in patients was 1-36, with a median of 2. There was no significant difference in PD-L1 expression fractions between CTCs and paired tumor tissue (p>0.05). The correlation coefficient was 0.20. Regardless of lung cancer tissue or CTCs, there was no statistically significant difference in the blood cytokine levels between the two groups with positive or negative PD-L1 expression (p>0.05). There was no correlation between CTCs and PD-L1 in 23 untreated patients. The expression of PD-L1 in CTCs and lung cancer tissue is heterogeneous and unaffected by the peripheral cytokines' levels. PD-L1 expression has no correlation between CTCs and tissues and is not related to prognosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Animales , Apoptosis , Antígeno B7-H1 , Biomarcadores de Tumor , Humanos , Ligandos , Ratones , Pronóstico
13.
Plant Cell Physiol ; 61(2): 370-380, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670803

RESUMEN

Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Intrones/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Empalme del ARN , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Alelos , Complejo I de Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Mitocondriales/genética , Mutación , Fenotipo , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN , Semillas/citología , Semillas/genética , Zea mays/genética
14.
J Integr Plant Biol ; 62(6): 777-792, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31332949

RESUMEN

In land plants, cytidine-to-uridine (C-to-U) editing of organellar transcripts is an important post-transcriptional process, which is considered to remediate DNA genetic mutations to restore the coding of functional proteins. Pentatricopeptide repeat (PPR) proteins have key roles in C-to-U editing. Owing to its large number, however, the biological functions of many PPR proteins remain to be identified. Through characterizing a small kernel4 (smk4) mutant, here we report the function of Smk4 and its role in maize growth and development. Null mutation of Smk4 slows plant growth and development, causing small plants, delayed flowering time, and small kernels. Cloning revealed that Smk4 encodes a new E-subclass PPR protein, and localization indicated that SMK4 is exclusively localized in mitochondria. Loss of Smk4 function abolishes C-to-U editing at position 1489 of the cytochrome c oxidase1 (cox1) transcript, causing an amino acid change from serine to proline at 497 in Cox1. Cox1 is a core component of mitochondrial complex IV. Indeed, complex IV activity is reduced in the smk4, along with drastically elevated expression of alternative oxidases (AOX). These results indicate that SMK4 functions in the C-to-U editing of cox1-1489, and this editing is crucial for mitochondrial complex IV activity, plant growth, and kernel development in maize.


Asunto(s)
Mitocondrias/metabolismo , Edición de ARN , Semillas/embriología , Semillas/genética , Zea mays/embriología , Zea mays/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Respiración de la Célula , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Aminoácido
15.
Plant J ; 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30003606

RESUMEN

Splicing of plant organellar group II introns is under accurate nuclear control that employs many nucleus-encoded protein cofactors from various families. For mitochondrial introns, only a few splicing factors have been characterized because disruption of their functions often causes embryo lethality. Here, we report the function of Empty Pericarp8 (Emp8) in the splicing of three group II introns in mitochondria, complex I biogenesis, and seed development in maize. Emp8 encodes a P subfamily pentatricopeptide repeat protein that localizes in mitochondria. The loss-of-function mutants of Emp8 are embryo lethal, showing severely arrested embryo and endosperm development in maize. The respiration rate in the emp8 mutants is reduced with substantially enhanced expression of alternative oxidases. Transcript analysis indicated that the trans-splicing of nad1 intron 4 and cis-splicing of nad4 intron 1 are abolished, and the cis-splicing of nad2 intron 1 is severely impaired in the emp8 mutants. These defects consequently lead to the disassembly of mitochondrial complex I and a dramatic reduction in its activity. Together, these results suggest that Emp8 is required for the trans-splicing of nad1 intron 4 and cis-splicing of nad4 intron 1 and nad2 intron 1, which is essential to mitochondrial complex I assembly and hence to embryogenesis and endosperm development in maize.

16.
J Exp Bot ; 70(3): 963-972, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30535370

RESUMEN

Plant mitochondrial genes contain cis- and trans-group II introns that must be spliced before translation. The mechanism by which these introns are spliced is not well understood. Several families of proteins have been implicated in the intron splicing, of which the pentatricopeptide repeat (PPR) proteins are proposed to confer the substrate binding specificity. However, very few PPRs are characterized. Here, we report the function of a P-type PPR protein, EMP12, and its role in seed development. EMP12 is targeted to mitochondria. Loss-of-function mutation in Emp12 severely arrests embryo and endosperm development, causing embryo lethality. The trans-splicing of mitochondrial nad2 intron 2 and cis-splicing of nad2 intron 4 are abolished, whereas the cis-splicing of nad2 intron 1 is reduced in emp12 mutants. As a result, complex I assembly is disrupted, and its activity is strongly reduced in the mutants. The expression of the alternative oxidase and several components of other mitochondrial complexes is increased, possibly in response to the defective complex I. These results suggest that Emp12 is required for the trans-splicing of nad2 intron 2 and cis-splicing of nad2 introns 1 and 4, and is important to complex I biogenesis, and embryogenesis and endosperm development in maize.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Endospermo/genética , Endospermo/crecimiento & desarrollo , Intrones , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Empalme del ARN , Semillas/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
17.
Cladistics ; 35(1): 42-66, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34636080

RESUMEN

The phylogeny of true bugs (Hemiptera: Heteroptera), one of the most diverse insect groups in terms of morphology and ecology, has been the focus of attention for decades with respect to several deep nodes between the suborders of Hemiptera and the infraorders of Heteroptera. Here, we assembled a phylogenomic data set of 53 taxa and 3102 orthologous genes to investigate the phylogeny of Hemiptera-Heteroptera, and both concatenation and coalescent methods were used. A binode-control approach for data filtering was introduced to reduce the incongruence between different genes, which can improve the performance of phylogenetic reconstruction. Both hypotheses (Coleorrhyncha + Heteroptera) and (Coleorrhyncha + Auchenorrhyncha) received support from various analyses, in which the former is more consistent with the morphological evidence. Based on a divergence time estimation performed on genes with a strong phylogenetic signal, the origin of true bugs was dated to 290-268 Ma in the Permian, the time in Earth's history with the highest concentration of atmospheric oxygen. During this time interval, at least 1007 apomorphic amino acids were retained in the common ancestor of the extant true bugs. These molecular apomorphies are located in 553 orthologous genes, which suggests the common ancestor of the extant true bugs may have experienced large-scale evolution at the genome level.

18.
Plant Physiol ; 174(2): 1127-1138, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28408540

RESUMEN

Vitamin B6, an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B6 deficiency causes embryo lethality in Arabidopsis (Arabidopsis thaliana), but the specific role of vitamin B6 biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a small kernel2 (smk2) mutant in maize, we reveal that vitamin B6 has differential effects on embryogenesis and endosperm development in maize. The B6 vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the smk2 embryo and the endosperm. However, whereas embryogenesis of the smk2 mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that Smk2 encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B6 biosynthesis de novo. Smk2 partially complements the Arabidopsis vitamin B6-deficient mutant pdx2.1 and Saccharomyces cerevisiae pyridoxine auxotrophic mutant MML21. Smk2 is constitutively expressed in the maize plant, including developing embryos. Analysis of B6 vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B6 is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B6 required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B6.


Asunto(s)
Glutaminasa/metabolismo , Mutación/genética , Semillas/embriología , Vitamina B 6/biosíntesis , Zea mays/embriología , Zea mays/enzimología , Secuencia de Aminoácidos , Arabidopsis/genética , Cromatografía Líquida de Alta Presión , Clonación Molecular , Citosol/metabolismo , Endospermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glutaminasa/química , Fenotipo , Plantas Modificadas Genéticamente , Subunidades de Proteína/metabolismo , Piridoxina/metabolismo , Saccharomyces cerevisiae/metabolismo , Semillas/genética , Zea mays/genética
19.
Cladistics ; 34(5): 502-516, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34706479

RESUMEN

Members of the family Scutelleridae (Heteroptera: Pentatomomorpha: Pentatomoidea) are also called shield bugs because of the greatly enlarged scutellum, or jewel bugs because of the brilliant colours of many species. All scutellerids are phytophagous, feeding on various parts of their host plants. Due to lack of obvious synapomorphies and the failure to apply rigorous phylogenetic methods, the higher classification of Scutelleridae has been disputed for more than 150 years. Here we reconstructed a phylogeny of Scutelleridae based on complete sequences of 18S and 28S nuclear rDNAs and all 13 protein-coding genes of the mitochondrial genome, with the sampled taxa covering all of the currently recognized subfamilies. The monophyly of Scutelleridae was confirmed by the congruence of the results of analyses conducted using Bayesian inference, maximum likelihood and maximum parsimony. The phylogenetic relationships among subfamilies were well resolved for the first time. Furthermore, time-divergence studies estimated that the time of origin of Scutelleridae was in the Early Cretaceous (142.1-122.8 Ma), after the origin of the angiosperms. The diversification between the extant subfamilies of Scutelleridae and within the subfamilies occurred from the late Palaeocene to the late Miocene, simultaneously with the rise of the major groups of angiosperms and other phytophagous insects.

20.
Water Sci Technol ; 77(5-6): 1483-1492, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595151

RESUMEN

This study developed a partial nitrification (PN) and anaerobic ammonia oxidation (Anammox) process for treating high-ammonia wastewater using an innovative biofilm system in which ammonia oxidizing bacteria grew on fluidized Kaldnes (K1) carriers and Anammox bacteria grew on fixed acryl resin carriers. The airlift loop biofilm reactor (ALBR) was stably operated for more than 4 months under the following conditions: 35 ± 2 °C, pH 7.5-8.0 and dissolved oxygen (DO) of 0.5-3.5 mg/L. The results showed that the total nitrogen removal efficiency reached a maximum of 75% and the total nitrogen removal loading rate was above 0.4 kg/(d·m3). DO was the most efficient control parameter in the mixed biofilm system, and values below 1.5 mg/L were observed in the riser zone for the PN reaction, while values below 0.8 mg/L were observed in the downer zone for the Anammox reaction. Scanning electron microscopy and Fluorescence In Situ Hybridization images showed that most of the nitrifying bacteria were distributed on the K1 carriers and most of the Anammox bacteria were distributed within the acryl resin carriers. Therefore, the results indicate that the proposed combined biofilm system is easy to operate and efficient for the treatment of high-ammonia wastewater.


Asunto(s)
Amoníaco/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Aguas Residuales/química , Amoníaco/química , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , Hibridación Fluorescente in Situ , Microscopía Electrónica de Rastreo , Nitrificación , Nitrógeno/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA