Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39076112

RESUMEN

Sustained attention, as the basis of general cognitive ability, naturally varies across different time scales, spanning from hours, e.g. from wakefulness to drowsiness state, to seconds, e.g. trial-by-trail fluctuation in a task session. Whether there is a unified mechanism underneath such trans-scale variability remains unclear. Here we show that fluctuation of cortical excitation/inhibition (E/I) is a strong modulator to sustained attention in humans across time scales. First, we observed the ability to attend varied across different brain states (wakefulness, postprandial somnolence, sleep deprived), as well as within any single state with larger swings. Second, regardless of the time scale involved, we found highly attentive state was always linked to more balanced cortical E/I characterized by electroencephalography (EEG) features, while deviations from the balanced state led to temporal decline in attention, suggesting the fluctuation of cortical E/I as a common mechanism underneath trans-scale attentional variability. Furthermore, we found the variations of both sustained attention and cortical E/I indices exhibited fractal structure in the temporal domain, exhibiting features of self-similarity. Taken together, these results demonstrate that sustained attention naturally varies across different time scales in a more complex way than previously appreciated, with the cortical E/I as a shared neurophysiological modulator.


Asunto(s)
Atención , Corteza Cerebral , Electroencefalografía , Vigilia , Humanos , Atención/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Vigilia/fisiología , Corteza Cerebral/fisiología , Inhibición Neural/fisiología , Factores de Tiempo , Excitabilidad Cortical/fisiología , Privación de Sueño/fisiopatología
2.
Plants (Basel) ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38592783

RESUMEN

This study aimed to determine the effects of the nitrogen (N) application period and level on the fate of fertilizer N and the contribution of N absorption and translocation to apple organ N. Two N application periods (labeled by the 15N tracer technique in spring and summer, represented by SP and SU, respectively) and three N levels (N0, MN, and HN) were used to determine the physiological indexes and aboveground, root, and soil 15N content of 4-year-old dwarf ('Red Fuji'/M9T337) and arborized ('Red Fuji'/Malus hupehensis Rehd.) apple trees. The results showed that HN led to shoot overgrowth, which was not conducive to the growth of the apple root system (root length, root tips, root surface area, and root volume) or the improvement of root activity. The contribution of soil N to apple organ N accounted for more than 50%, and the contribution of N application in summer to fruit N was higher than that in spring. Under HN treatment, the proportion of soil N absorbed by trees decreased, while that of fertilizer N increased; however, the highest proportion was still less than 50%, so apple trees were highly dependent on soil N. Under MN treatment, fertilizer N residue was similar to soil N consumption, and soil N fertility maintained a basic balance. Under HN treatment, fertilizer N residue was significantly higher than soil N consumption, indicating that excessive N application increased fertilizer N residue in the soil. Overall, the 15N utilization rate of arborized trees (17.33-22.38%) was higher than that of dwarf trees (12.89-16.91%). A total of 12.89-22.38% of fertilizer 15N was absorbed by trees, 30.37-35.41% of fertilizer 15N remained in the soil, and 44.65-54.46% of fertilizer 15N was lost. The 15N utilization rate and 15N residual rate of summer N application were higher than those of spring N application, and the 15N loss rate was lower than that of spring N application. High microbial biomass N (MBN) may be one of the reasons for the high N utilization rate and the low loss rate of N application in summer.

3.
iScience ; 26(10): 107963, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37822500

RESUMEN

The delicate balance between cortical excitation and inhibition (E/I) plays a pivotal role in brain state changes. While previous studies have associated cortical hyperexcitability with brain state changes induced by sleep deprivation, whether cortical hypoexcitability is also linked to brain state changes and, if so, how it could affect cognitive performance remain unknown. Here, we address these questions by examining the brain state change occurring after meals, i.e., postprandial somnolence, and comparing it with that induced by sleep deprivation. By analyzing features representing network excitability based on electroencephalogram (EEG) signals, we confirmed cortical hyperexcitability under sleep deprivation but revealed hypoexcitability under postprandial somnolence. In addition, we found that both sleep deprivation and postprandial somnolence adversely affected the level of vigilance. These results indicate that cortical E/I balance toward inhibition is associated with brain state changes, and deviation from the balanced state, regardless of its direction, could impair cognitive performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA